Reachability Analysis in the KeYmaera X Theorem Prover

SNR 2017 | Uppsala, Sweden | April 22, 2017

Nathan Fulton

Other System Contributors: Stefan Mitsch, André Platzer, Brandon Bohrer, Yong Kiam Tan, Jan-David Quesel, ...
Trustworthy Foundations

Interactive Reachability Analysis
- Demonstration
- Bellerophon language and library

Automation and Tooling

Conclusions & Resources
KeYmaera X enables trustworthy automation for hybrid systems analysis:

- A well defined **logical foundations**, implemented in a **small trustworthy core** that ensures correctness of **automation** and **tooling**.
$a := t$

\[
\begin{align*}
a &= a_0 \\
b &= b_0 \\
c &= c_0 \\
\ldots
\end{align*}
\]

\[
\begin{align*}
a &= t \\
b &= b_0 \\
c &= c_0 \\
\ldots
\end{align*}
\]
$a := t$

```
a = a_0
b = b_0
c = c_0
...
```

```
a = t
b = b_0
c = c_0
...
```

$a; b$
```
Trustworthy Foundations
Hybrid Programs

a := t

?P
If P is true: no change
If P is false: terminate
```
a := t

If P is true: no change
If P is false: terminate
Trustworthy Foundations
Hybrid Programs

\[a := t \]
\[\begin{array}{l}
\text{a} = a_0 \\
\text{b} = b_0 \\
\text{c} = c_0 \\
\end{array} \quad \rightarrow \quad \begin{array}{l}
\text{a} = t \\
\text{b} = b_0 \\
\text{c} = c_0 \\
\end{array} \]

\[a \cup b \]

\[\text{If P is true: no change} \]
\[\text{If P is false: terminate} \]

\[a^* \]

\[a ; b \]

\[a \cup b \]
Trustworthy Foundations

Hybrid Programs

\[a := t \]

\[a = a_0 \quad b = b_0 \quad c = c_0 \]

...\[a = t \quad b = b_0 \quad c = c_0 \]

...\[x' = f \]

If \(P \) is true: no change

If \(P \) is false: terminate

\[a \cup b \]

\[x = F(0) \]

...\[x = x_0 \]

...\[x = F(T) \]

\[a ; b \]

...\[a ; b \]

...\[a ; b \]

...\[a ; b \]
\[
\begin{align*}
\{ \text{?Dive U } r & := r_p \}; \\
& t := 0; \\
& \{ x' = v, \\
& \quad V' = f(v, g, r), \quad t' = 1 \\
& \quad \& 0 \leq x \quad \& t \leq T \}
\end{align*}
\]

Control: Continue diving if safe, else open parachute.

Plant: Downward velocity determined by gravity, air resistance.
\begin{aligned} &\{?\text{Dive} \cup r := r_p\}; \\
& t := 0; \\
& \{x' = v, \ \\
& V' = f(v, g, r), \ t' = 1 \\
& \& 0 \leq x \& t \leq T\} \end{aligned}

\textbf{Control:} Continue diving if safe, else open parachute.

\textbf{Plant:} Downward velocity determined by gravity, air resistance.
\[
\{ \text{?Dive} \cup r := r_p \};
\]
\[
t := 0;
\]
\[
\{ x' = v, \\
V' = f(v, g, r), \quad t' = 1 \}
\]
\[
& \quad 0 \leq x \quad \& \quad t \leq T
\]

*

Control: Continue diving if safe, else open parachute.

Plant: Downward velocity determined by gravity, air resistance.
\[
\begin{align*}
\{ & \text{Dive} \cup r := r_p \}; \\
& t := 0; \\
& \{ x' = v, \\
& \quad V' = f(v, g, r), \quad t' = 1 \\
& \quad & 0 \leq x \quad \& \quad t \leq T \}
\}
\]

Control: Continue diving if safe, else open parachute.

Plant: Downward velocity determined by gravity, air resistance.
\{
 \{ ?Dive \cup r := r_p \};
 t := 0;
 \{ x' = v, \\
 V' = f(v, g, r), \thinspace t' = 1 \\
 \& \thinspace 0 \leq x \thinspace \& \thinspace t \leq T \}
\} *

Control: Continue diving if safe, else open parachute.

Plant: Downward velocity determined by gravity, air resistance.
[a]P "after every execution of a, P"
<a>P "after some execution of a, P"
(Dive & g>0 & ...) →

\[
\{ \\
{ \text{?Dive} \cup r := r_p } ; \\
{ x' = v } , \\
{ V' = f(v, g, r) } \\
& 0 \leq x \\
\} \ast (x=0 \rightarrow m \leq v)
\]
(Dive & g>0 & ...) →
{
 {?Dive \cup r := r_p};
 {x' = v, V' = f(v, g, r)
 \& 0 \leq x}
\}
(*) (x=0 \rightarrow m \leq v)

If the parachuter is on the ground, their speed is safe (m \leq v \leq 0)
Introduction to Differential Dynamic Logic

Dynamical Axioms

\[
[x:=t]f(x) \leftrightarrow f(t)
\]
\[
[a;b]P \leftrightarrow [a][b]P
\]
\[
[a\cup b]P \leftrightarrow ([a]P \& [b]P)
\]
\[
[a^*]P \leftrightarrow (J\rightarrow P \& J\rightarrow [b]J)
\]
\[
[x'=f\&H]P \leftrightarrow H\rightarrow P
\]

...
Introduction to Differential Dynamic Logic

Trusted Core

AXIOM BASE

[x:=t]f(x) ↔ f(t)
[a;b]P ↔ [a][b]P
[a∪b]P ↔ ([a]P & [b]P)
[a*]P↔(J→P & J→[b]J)
[x'=f&H]P ↔ H→P
...

KeYmaera X Core

Q.E.D.
Introduction to Differential Dynamic Logic

Trustworthy Implementations

Automated Analyses

Control Software

Tooling

AXIOM BASE

\[
\begin{align*}
[x:=t]f(x) & \rightarrow f(t) \\
[a;b]P & \rightarrow [a][b]P \\
[a\cup b]P & \leftrightarrow ([a]P \land [b]P) \\
[a^*]P & \leftrightarrow (J\rightarrow P \land J\rightarrow[b]J) \\
[x'=f\&H]P & \leftrightarrow H\rightarrow P \\
\ldots
\end{align*}
\]

KeYmaera X Core

Q.E.D.
Prover Core Comparison

<table>
<thead>
<tr>
<th>Tool</th>
<th>Trusted LOC (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KeYmaera X</td>
<td>1,682 (out of 100,000+)</td>
</tr>
<tr>
<td>KeYmaera</td>
<td>65,989</td>
</tr>
<tr>
<td>Isabelle/Pure</td>
<td>8,113</td>
</tr>
<tr>
<td>Coq</td>
<td>20,000</td>
</tr>
<tr>
<td>HSolver</td>
<td>20,000</td>
</tr>
<tr>
<td>dReal</td>
<td>50,000</td>
</tr>
<tr>
<td>SpaceEx</td>
<td>100,000</td>
</tr>
</tbody>
</table>
KeYmaera X enables interactive verification and tool development:
KeYmaera X enables interactive verification and tool development:

- A **standard library** of common proof techniques.
KeYmaera X enables interactive verification and tool development:

- **A standard library** of common proof techniques.
- **A combinator language/library** for decomposing theorems and composing proof strategies.
Interactive Reachability Analysis in KeYmaera X

Bellerophon

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prop</code></td>
<td>Applies propositional reasoning exhaustively.</td>
</tr>
<tr>
<td><code>unfold</code></td>
<td>Symbolically executes discrete, loop-free programs.</td>
</tr>
<tr>
<td><code>loop(J, i)</code></td>
<td>Applies loop invariance axiom to position i.</td>
</tr>
</tbody>
</table>
Interactive Reachability Analysis in KeYmaera X

Bellerophon

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prop</code></td>
<td>Applies propositional reasoning exhaustively.</td>
</tr>
<tr>
<td><code>unfold</code></td>
<td>Symbolically executes discrete, loop-free programs.</td>
</tr>
<tr>
<td><code>loop(J, 1)</code></td>
<td>Applies loop invariance axiom to position i.</td>
</tr>
</tbody>
</table>
Tactic

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>prop</td>
<td>Applies propositional reasoning exhaustively.</td>
</tr>
<tr>
<td>unfold</td>
<td>Symbolically executes discrete, loop-free programs.</td>
</tr>
<tr>
<td>loop(J, i)</td>
<td>Applies loop invariance axiom to position i.</td>
</tr>
</tbody>
</table>

Combinator

<table>
<thead>
<tr>
<th>Combinator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ; B</td>
<td>Execute A on current goal, then execute B on the result.</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A*</td>
<td>Run A until it no longer applies.</td>
</tr>
<tr>
<td>A<(B₀, B₁, ..., Bₙ)</td>
<td>Execute A on current goal to create N subgoals. Run Bᵢ on subgoal i.</td>
</tr>
</tbody>
</table>
Interactive Reachability Analysis in KeYmaera X

Isolating Interesting Questions

(Dive & g>0 & ...) →

[{ } *] (x=0 → m≤ v)
Interactive Reachability Analysis in KeYmaera X

Isolating Interesting Questions

(Dive & g>0 & ...) →

\[\{ \text{prop ; loop}(J,1) \} \]

\(x=0 \rightarrow m \leq v \)

Loop invariant holds initially

Loop invariant is preserved

Loop invariant implies safety
Interactive Reachability Analysis in KeYmaera X
Isolating Interesting Questions

\[(\text{Dive} \& g > 0 \& \ldots) \rightarrow \{ x = 0 \rightarrow m \leq v \}\]

Loop invariant holds initially

Loop invariant is preserved

Loop invariant implies safety
Interactive Reachability Analysis in KeYmaera X

Isolating Interesting Questions

\[
(Dive \& g>0 \& \ldots) \rightarrow \\
[\{

\} \ast] (x=0 \rightarrow m \leq v)
\]

\[
(Dive \& g>0 \& \ldots) \rightarrow \\
J
\]

\[
prop \; ; \; \text{loop}(J,1) \rightarrow \\
\]

\[
J \rightarrow [\\
] J
\]

\[
J \rightarrow [\\
x=0 \rightarrow m \leq v
\]

\[
J \& Dive \& r=r_a \rightarrow \\
[x'=v, v' = \ldots] J
\]

\[
J \& r=r_p \rightarrow \\
[x'=v, v' = \ldots] J
\]
(Dive & g>0 & ...) →
[{ prop ; loop(J,1) }]

J →
[]

J →
[]

J & Dive & r=r_a →
[x'=v , v' = ...] J

J & r=r_p →
[x'=v , v' = ...] J
prop ; loop(J, 1) <(
 QE, /* Real arith. solver */
 QE,
 Unfold <(
 ... /* parachute open case */
 ... /* parachute closed case */
)
)
J = v > -sqrt(g/pr) > m & ...

Parachute Open Case:

\[
\begin{align*}
v &\geq v_0 - gt \\
&\geq v_0 - gT \\
&> -sqrt(g/pr)
\end{align*}
\]

Inductive invariants
Interactive Reachability Analysis in KeYmaera X
Differential Induction

DI Axiom:
\([x'=f \& H]P \leftrightarrow (P \& (H \rightarrow [x':=f]P'))\)
DI Axiom:
$[x' = f \& H]P \leftrightarrow (P \& (H \rightarrow [x' := f]P'))$

Example:
$[v' = r_p v^2 - g, t' = 1] v \geq v_0 - gt$
DI Axiom:

$[x'=f \& H]P \leftrightarrow (P \& (H \rightarrow [x':=f]P'))$

Example:

$[v'=r_p v^2 - g, t'=1] v \geq v_0 - gt \leftrightarrow$

\ldots

$[v':=r_p v^2 - g] [t':=1] v' \geq -g * t' \leftrightarrow$

$r_p v^2 - g \geq -g \leftrightarrow$

$r_p \geq 0$
DI Axiom:

\([x'=f&H]P \leftrightarrow (P \land (H \rightarrow [x' := f]P'))\)

Example:

\[v' = r_p v^2 - g, t' = 1\] \(v \geq v_0 - gt\)

\[v' = r_p v^2 - g\] \([t' := 1]\) \(v' \geq -g * t'\)

\(v' \geq v_0 - (tg' + gt')\)

Side derivation:

\(H = r_p \geq 0 \land r_a \geq 0 \land g > 0 \land ...\)

\(H \rightarrow r_p \geq 0\)
DI Axiom:

\[
[x'=f \& H]P \leftrightarrow (P \& (H \rightarrow [x' := f]P'))
\]

Example:

\[
[v' = r_p v^2 - g, \ t' = 1] v \geq v_0 - gt
\]

\[
\ldots
\]

\[
[v' := r_p v^2 - g] [t' := 1] v' \geq -g \times t'
\]

\[
r_p v^2 - g \geq -g
\]

\[
H \rightarrow r_p \geq 0
\]

Tactics recover a useful level of abstraction.
Pedantry is the price of trust.
Pedantry is the price of trust.

Bellerophon automates pedantic deductions.
Hybrid Systems Analyses can be built on top of KeYmaera X.

Examples:
- ODE Solver
- Runtime Monitoring
1. Use untrusted code to find a conjecture.

2. Prove the conjecture systematically.

AXIOM BASE

Untrusted ODE Solver

Axiomatic Solver (Bellerophon Program)

KeYmaera X Core

Q.E.D.
Toward Automated Deduction
ModelPlex Tactic
Toward Automated Deduction

Learning how to be Safe

Dual Strategy controller with Stochastic Perturbations
\((A=1, B=2) \)
Automated Analysis for nonlinear systems:
- Pretty decent automation for systems with univariate nonlinearities.
- Heuristics for multi-variate systems.
Automated Analysis for nonlinear systems:
 ○ Pretty decent automation for systems with univariate nonlinearities.
 ○ Heuristics for multi-variate systems.
Heuristic loop invariant generation for control loops
● Automated Analysis for nonlinear systems:
 ○ Pretty decent automation for systems with univariate nonlinearities.
 ○ Heuristics for multi-variate systems.
● Heuristic loop invariant generation for control loops
● Taylor Approximations
● ...
● Automated Analysis for nonlinear systems:
 ○ Pretty decent automation for systems with univariate nonlinearities.
 ○ Heuristics for multi-variate systems.
● Heuristic loop invariant generation for control loops
● Taylor Approximations
● ...
● Component-based Verification Tooling
 Mueller et al., *Change and Delay Contracts for Hybrid System Component Verification*, FASE’17 -- Thursday 10:30-12:30
KeYmaera X is a hybrid systems theorem prover with:

- A small and trustworthy prover core and
- Excellent infrastructure for interactively verifying complex systems and implementing automated analyses.
KeYmaera X is a hybrid systems theorem prover with:

- A small and trustworthy prover core and
- Excellent infrastructure for **interactively verifying complex systems** and implementing automated analyses.

Project Website (start here) keymaeraX.org

Online Demo web.keymaeraX.org

GPL’d Source Code github.com/ls-lab/KeYmaeraX-release

Course Materials symbolaris.com/course/fcps17.html
Developers:

- Stefan Mitsch
- Nathan Fulton
- Andre Platzer
- Jan-David Quesel
- Brandon Bohrer
- Yong Kiam Tan
- Markus Voelp

Special Thanks:

- 15-424 students, Jean-Baptiste Jeanin, Khalil Ghorbal, Daniel Ricketts
Parachute Closed:
\[J \land t=0 \land r=r_p \rightarrow \]
\[[x'=v, v'=rv^2-g \land 0\leq x \land t\leq T] v> -\sqrt{g/ pr} > m \]

Proof requires a **differential ghost** because the property is **not inductive**.
Interactive Reachability Analysis in KeYmaera X

Differential Ghosts

An example differential ghost.

\[x > 0 \rightarrow [x' = -x] x > 0 \]
An example differential ghost.

\[x > 0 \rightarrow [x' = -x] x > 0 \]

Ghost: \[y' = y/2 \]
Conserved: \[1 = xy^2 \]
An example differential ghost.

\[x > 0 \rightarrow [x' = -x] x > 0 \]

Ghost: \[y' = y/2 \]

Conserved: \[1 = xy^2 \]

Notice:

\[x > 0 \leftrightarrow \exists y. 1 = xy^2 \]

Therefore, suffices to show:

\[1 = xy^2 \rightarrow \exists y. [x' = -x, y' = y/2] 1 = xy^2 \]