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Trustworthy Foundations

KeYmaera X enables trustworthy
automation for hybrid systems
analysis:

e A well defined logical foundations,
e implemented in a small trustworthy core
e that ensures correctness of automation and tooling.
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Trustworthy Foundations

Hybrid Programs
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7P

If P is false: terminate
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Trustworthy Foundations

Hello, World
{
{?Dive U r := rp};
t:=0;
{x" = v,
v/’ = f(v,g,r), t’=1
& 0sx & t=T}
}*

Control: Continue diving if safe, else open parachute.
Plant. Downward velocity determined by gravity, air resistance.
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Trustworthy Foundations

Hello, World
{
{?Dive U r := rp};
t:=0;
{x" = v,
v/’ = f(v,g,r), t’=1
§ 0<x & t=<T)}
}*

Control: Continue diving if safe, else open parachute.
Plant. Downward velocity determined by gravity, air resistance.



Trustworthy Foundations

Reachability Specifications

[a]P  “after every execution of a, P’
<a>P “after some execution of a, P”



Trustworthy Foundations

Reachability Specifications

(Dive & g>0 & ..)-

[ {
{?Dive U r := rp};
{x" = v,
v/ = t£t(v,qg,r)
& 0<x}

}*] (x=0-m<v)




Trustworthy Foundations

Reachability Specifications

(Dive & g>0 & ..)-

[ {
{?Dive U r := rp};
{x" = v,
v/ = t£t(v,qg,r)
& 0<x}
* =0_m<
} ]éx 0 m_v)/

~
If the parachuter is on the ground, their speed is safe (m<v=<0)



Introduction to Differential Dynamic Logic

Dynamical Axioms

X:=t]f(X) o £ (L)

a;b]P - [a]l [b]P
aUb]P - ([a]P & [b]P)
(a*]P - (J-P & J-[b]J)




Introduction to Differential Dynamic Logic

Trusted Core

" axomease

e e KeYmaera X Core Q.E.D.

(
[a;b]P « [a][b]P
[aUb]P « ([alP & [Db]P)
[a*]Po(J-P & J-[b]J)
[X’:f&H]P ~ H-P




Introduction to Differential Dynamic Logic

Trustworthy Implementations

I I I
Automated Control .
Ll Ll Tooling Ll
Analyses | Software | L
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Introduction to Differential Dynamic Logic
Prover Core Comparison

KeYmaera X 1,682 (out of 100,000+)
KeYmaera 65,989

Isabelle/Pure 8,113

Coq 20,000

HSolver 20,000

dReal 50,000

SpaceEx 100,000



KeYmaera X enables interactive
verification and tool development:
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KeYmaera X enables interactive

verification and tool development:
e A standard library of common proof
techniques.
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KeYmaera X enables interactive

verification and tool development:

e A standard library of common proof
techniques.

e A combinator language/library for
decomposing theorems and composing
proof strategies.



Tactic Meaning

prop Applies propositional reasoning exhaustively.
unfold Symbolically executes discrete, loop-free programs.
loop (J, 1) Applies loop invariance axiom to position i.
dI,dG,dcC,dw Reasoning principles for differential equations.
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Interactive Reachability Analysis in KeYmaera X

Bellerophon
prop Applies propositional reasoning exhaustively.
unfold Symbolically executes discrete, loop-free programs.
loop (J, i) Applies loop invariance axiom to position i.
dI,dG,dc,dw Reasoning principles for differential equations.
A;B Execute A on current goal, then execute B on the result.
A|B Try executing A on current goal. If A fails, execute B on current goal.
A* Run A until it no longer applies.

A<(B,,B,, ... B, ) | Execute A on current goal to create N subgoals. Run B, on subgoal i.
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Loop invariant holds initially

Loop invariant is preserved

Loop invariant implies safety
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(Dive &
g>0 &
(Dive & g>0 ) =
& ) J
[ { G g
(@ ) “ ’
Jo[ J & Dive & r=ra—>
[x'=v, v/ =...]0
prop ; loop(J,1) unfold
V : )
J&r=r -
J
© ] J [x’=v?v’=...]J
(@ D)
}*] (x=0-m<v) "
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&, J G .




@

(Dive & g>0
& .)-
[{

}*] (%x=0-mSv)

prop ; Ioop(J,1>

(@

(Dive &
g>0 &

D)

@
Jo

x=0-msv

unfold >

J & Dive & r=r-

[x'=v, v/ =...]0
J & r=r -
[x'=v, v/ =...]0




prop ; loop(Jd, 1) <(
QE, /* Real arith. solver */
QE,
Unfold <(
.. /* parachute open case */
.. /* parachute closed case */



J =v > -sqrt(g/pr) > m & ..

Parachute Open Case:
v 2 v, - gt

> v, = gT

> —-sqgrt (g/pr)
- 7 7 x{ verig

Inductive invariants

V
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[X=f&H]P(P & (H—[x:=f]P"))
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dl Tactic: DI Axiom:
[X'=f&H]P—(P & (H—[x:=f]P’))

— Example:

Side derivation: ;

(v 2vy-gt) o v/=r v’-g,t’=1l]v 2 v, - gt o
(v)'2 (v, - gt)" o [ p I ] 0 g

(V)2 (v, - gt)’ o [ .. —
(V)2 (v ) '-(gt) ' - 2

(V)72 () - (L) Hg () o [V’ .erv —g] [t’ :Zl]v’ > —g*t’ PN
\V&4 ZV [ (tg,‘"gt’)



dl Tactic:

Side derivation:

(v 2 v, = gt)’ o
(v)"2 (v, - gt)’ o
(v)"2 (v, - gt)’ o
(V)2 (v ) '-(gt) ' -
(V) "2 (v) = (t(g) +g(t")) o
vroo2v, - (tg’+gt’)

H=rp20 &r20&g>0&...

DI Axiom:
[X'=f&H]P—(P & (H—[x:=f]P’))

—_

Example:

[v’=rpv2—g,t’=l]v > Vo o~ gt o
[v/ :=rpv2—g] (t’ :=1]v' 2 -g*t’' o
rpvz—g 2 —g —

Hor ZO
P

Tactics recover a useful level of abstraction.



Pedantry is the price of trust.



Pedantry is the price of trust.

Bellerophon automates pedantic
deductions.



Automation and Tooling

Hybrid Systems Analyses can be built
on top of KeYmaera X.

Examples:
e ODE Solver
e Runtime Monitoring



Toward Automated Deduction
Solving Differential Equations

Use untrusted code Untrusted ODE Solver
to find a conjecture.

- 4

Axiomatic Solver
(Bellerophon Program)

Prove the conjecture //\
. ) AXIOM BASE
systematically. N T T A

[x:=t]1£(x) « £(t) KeYmaera X Core Q.E.D.
[a;b]P « [a] [b]P
[aUb]P « ([alP & [b]P)
[a*]P » (J-P & J=[b]J)
[x'=f&H]P o H-P

A\




Toward Automated Deduction

ModelPlex Tactic

Proof KeYmaera X @3¢
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Runtime

model describes controller and physics




Toward Automated Deduction
Learning how to be Safe

Dual Strategy controller with Stochastic Perturbations
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Toward Automated Deduction

Other Proof Automation & Tooling

e Automated Analysis for nonlinear systems:
o Pretty decent automation for systems with univariate
nonlinearities.
o Heuristics for multi-variate systems.
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Toward Automated Deduction

Other Proof Automation & Tooling

Automated Analysis for nonlinear systems:

o Pretty decent automation for systems with univariate
nonlinearities.

o Heuristics for multi-variate systems.

Heuristic loop invariant generation for control loops

Taylor Approximations

Component-based Verification Tooling
Mueller et al., Change and Delay Contracts for Hybrid System Component
Verification, FASE’17 -- Thursday 10:30-12:30



Conclusion

KeYmaera X is a hybrid systems theorem prover with:

e A small and trustworthy prover core and

e Excellent infrastructure for interactively verifying complex
systems and implementing automated analyses.



Conclusion

KeYmaera X is a hybrid systems theorem prover with:

e A small and trustworthy prover core and

e Excellent infrastructure for interactively verifying complex
systems and implementing automated analyses.

Project Website (start here) keymaeraX.org
Online Demo web.keymaeraX.org
GPL’d Source Code github.com/Is-lab/KeYmaeraX-release

Course Materials symbolaris.com/course/fcps17.html
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Parachute Closed:
J & t=0 & r=r -
5 ¢
[x'=v,v' =rv‘-g & 0=x & t<T]v>-sgrt(g/pr) > m

Proof requires a differential
ghost because the property is not
inductive.

V’=rve-g




An example differential ghost.

x>0 - [x"'=-x]x>0



An example differential ghost.

x>0 —» [x'=-x]x>0
Ghost: v/ =y/2
Conserved: |—xy
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An example differential ghost.

x>0 —» [x'=-x]x>0
Ghost: v/ =y/2
Conserved: |—xy

Notice:

x>0 o Ty.l=xy’
Therefore, suffices to show:
1=xy’~Avy.[x =-x, v/ J1=xy?

1 1 1 1 [ ! 1 1 [ [ ! 1 1 [l [ 1
0.5 1.0 1.5 210



