Reachability Analysis in the

KeYmaera X Theorem Prover

SNR 2017 | Uppsala, Sweden | April 22, 2017
Nathan Fulton

Other System Contributors: Stefan Mitsch, André Platzer, Brandon Bohrer, Yong
Kiam Tan, Jan-David Quesel, ...

Trustworthy Foundations

Interactive Reachability Analysis

> Demonstration
> Bellerophon language and library

Automation and Tooling

Conclusions & Resources

Trustworthy Foundations

KeYmaera X enables trustworthy
automation for hybrid systems
analysis:

e A well defined logical foundations,
e implemented in a small trustworthy core
e that ensures correctness of automation and tooling.

Trustworthy Foundations

Hybrid Programs

Trustworthy Foundations

Hybrid Programs

Trustworthy Foundations

Hybrid Programs

a=a a=

a: =t | b=b .
eo? | = oxc’ a;b @»@—»(\b b

If P is true: no change

7P

If P is false: terminate

Trustworthy Foundations

Hybrid Programs

aub

If P is true: no change

7P

If P is false: terminate

Trustworthy Foundations

Hybrid Programs

aub

If P is true: no change

7P

If P is false: terminate

Trustworthy Foundations

Hybrid Programs

ab
a o t a=a, a=
. b=b — b=b .
C=C:)) C=C§ a L) b M
| aUb

If P is true: no change
7P

If P is false: terminate

x=F(0)

a* a ..a... X’: K=

x=F(T)

Trustworthy Foundations

Hello, World
{
{?Dive U r := rp};
t:=0;
{x" = v,
v/’ = f(v,g,r), t’=1
& 0sx & t=T}
}*

Control: Continue diving if safe, else open parachute.
Plant. Downward velocity determined by gravity, air resistance.

Trustworthy Foundations

Hello, World
{
{?Dive U r := rp};
t:=0;
{x" = v,
v/’ = f(v,g,r), t’=1
& 0sx & t=T}
} *

Control: Continue diving if safe, else open parachute.
Plant. Downward velocity determined by gravity, air resistance.

Trustworthy Foundations

Hello, World
{
{?Dive U r := rp};
t:=0;
{x" = v,
v/’ = f(v,g,r), t’=1
& 0sx & t=T}
}*

Control: Continue diving if safe, else open parachute.
Plant. Downward velocity determined by gravity, air resistance.

Trustworthy Foundations

Hello, World
{
{?Dive U r := rp};
t:=0;
{x" = v,
v’ = f(v,g,r), t'=1
& 0sx & t=T}
}*

Control: Continue diving if safe, else open parachute.
Plant. Downward velocity determined by gravity, air resistance.

Trustworthy Foundations

Hello, World
{
{?Dive U r := rp};
t:=0;
{x" = v,
v/’ = f(v,g,r), t’=1
§ 0<x & t=<T)}
}*

Control: Continue diving if safe, else open parachute.
Plant. Downward velocity determined by gravity, air resistance.

Trustworthy Foundations

Reachability Specifications

[a]P “after every execution of a, P’
<a>P “after some execution of a, P”

Trustworthy Foundations

Reachability Specifications

(Dive & g>0 & ..)-

[{
{?Dive U r := rp};
{x" = v,
v/ = t£t(v,qg,r)
& 0<x}

}*] (x=0-m<v)

Trustworthy Foundations

Reachability Specifications

(Dive & g>0 & ..)-

[{
{?Dive U r := rp};
{x" = v,
v/ = t£t(v,qg,r)
& 0<x}
* =0_m<
}]éx 0 m_v)/

~
If the parachuter is on the ground, their speed is safe (m<v=<0)

Introduction to Differential Dynamic Logic

Dynamical Axioms

X:=t]f(X) o £ (L)

a;b]P - [a]l [b]P
aUb]P - ([a]P & [b]P)
(a*]P - (J-P & J-[b]J)

Introduction to Differential Dynamic Logic

Trusted Core

" axomease

e e KeYmaera X Core Q.E.D.

(
[a;b]P « [a][b]P
[aUb]P « ([alP & [Db]P)
[a*]Po(J-P & J-[b]J)
[X’:f&H]P ~ H-P

Introduction to Differential Dynamic Logic

Trustworthy Implementations

I I I
Automated Control .
Ll Ll Tooling Ll
Analyses | Software | L
Ez;;]téfix’[a‘;[i](;) KeYmaera X Core Q _ E _ D _
[aUb]P - ([alP & [b]P)
I

o /

Introduction to Differential Dynamic Logic
Prover Core Comparison

KeYmaera X 1,682 (out of 100,000+)
KeYmaera 65,989

Isabelle/Pure 8,113

Coq 20,000

HSolver 20,000

dReal 50,000

SpaceEx 100,000

KeYmaera X enables interactive
verification and tool development:

Interactive Reachability Analysis in KeYmaera X

KeYmaera X enables interactive

verification and tool development:
e A standard library of common proof
techniques.

Interactive Reachability Analysis in KeYmaera X

KeYmaera X enables interactive

verification and tool development:

e A standard library of common proof
techniques.

e A combinator language/library for
decomposing theorems and composing
proof strategies.

Tactic Meaning

prop Applies propositional reasoning exhaustively.
unfold Symbolically executes discrete, loop-free programs.
loop (J, 1) Applies loop invariance axiom to position i.
dI,dG,dcC,dw Reasoning principles for differential equations.

Tactic Meaning
: " . : 100+
prop Applies propositional reasoning exhaustively.
unfold Symbolically executes discrete, loop-free programs.
loop(J, 1) Applies loop invariance axiom to position i.
dI,dG,dcC,dw Reasoning principles for differential equations.

Interactive Reachability Analysis in KeYmaera X

Bellerophon
prop Applies propositional reasoning exhaustively.
unfold Symbolically executes discrete, loop-free programs.
loop (J, i) Applies loop invariance axiom to position i.
dI,dG,dc,dw Reasoning principles for differential equations.
A;B Execute A on current goal, then execute B on the result.
A|B Try executing A on current goal. If A fails, execute B on current goal.
A* Run A until it no longer applies.

A<(B,,B,, ... B,) | Execute A on current goal to create N subgoals. Run B, on subgoal i.

(@)

(Dive & g>0
& .)-
[{

}*] (%x=0-mSv)

@

(Dive & g>0
& .)-
[{

}*] (%x=0-mSv)

prop ; Ioop(J,1>

(@

(Dive &
g>0 &

@lJ

x=0-msv

Loop invariant holds initially

Loop invariant is preserved

Loop invariant implies safety

@

(Dive & g>0
& .)-
[{

}*] (%x=0-mSv)

prop ; Ioop(J,1>

(@

(Dive &
g>0 &

) —

(@

J- [

@ 1Y

(@

Jo

x=0-msv

Loop invariant holds initially

Loop invariant is preserved

Loop invariant implies safety

e
o) @)
(Dive &
g>0 &
(Dive & g>0) =
&) J
[{ G g
(@) “ ’
Jo[J & Dive & r=ra—>
[x'=v, v/ =...]0
prop ; loop(J,1) unfold
V :)
J&r=r -
J
©] J [x’=v?v’=...]J
(@ D)
}*] (x=0-m<v) "
x=0-m<v
&, J G .

@

(Dive & g>0
& .)-
[{

}*] (%x=0-mSv)

prop ; Ioop(J,1>

(@

(Dive &
g>0 &

D)

@
Jo

x=0-msv

unfold >

J & Dive & r=r-

[x'=v, v/ =...]0
J & r=r -
[x'=v, v/ =...]0

prop ; loop(Jd, 1) <(
QE, /* Real arith. solver */
QE,
Unfold <(
.. /* parachute open case */
.. /* parachute closed case */

J =v > -sqrt(g/pr) > m & ..

Parachute Open Case:
v 2 v, - gt

> v, = gT

> —-sqgrt (g/pr)
- 7 7 x{ verig

Inductive invariants

V

=fP"))

f&H]P—(P & (H—[x

7 DI Axiom

X,
RN
VoV NN
AN
TR
TR
S N
A A S A T
YRR
D S A
T A e e g g0
4/1/4/4!A|m\k\
4/1/4/4/4/1;*&
///4/4//4.1
/v////ly«
L T S S U

<

L A A I's /

[}

-

£ Y W O 4 g g

-« - - A 4y

A xR A Al a e

A

- -« - a 4+ ¥

- = e e = e = —

-

- - - - -

[X=f&H]P(P & (H—[x:=f]P"))

S DI Axiom:

RN
YA

- e L _

Y v - e a

f
7
rd
7
‘
.
v
A

¥

v

v
v

e]
_./r//

-« W W W e B > = > e o B e =

L

)

g X
o o

|

[
.,\\U YA\
O

= >

T >
. YA\ —
X, "

_, > Il

1 - ~
= I)
~ | I—|
od D _
ol ~ o
N—" g |

. 7 o
£Ea @%b e
o o . |
X8 £ .-
< 9 .vm, S
oXx w2
AN H
IR 7t
NN 0o
\kh(/// SR AN AN
S R TR T S

LA Ny T
FAEF S P a0
Tl B BT N
R A A I T S
”Ar..\n\\\\\‘.A,;v.
////HMMHHHH““““
//////44A»w~‘..
///,/ly«4a‘~.<.
aa*_*»_,... Y v oy v oy

dl Tactic: DI Axiom:
[X'=f&H]P—(P & (H—[x:=f]P’))

— Example:

Side derivation: ;

(v 2vy-gt) o v/=r v’-g,t’=1l]v 2 v, - gt o
(v)'2 (v, - gt)" o [p I] 0 g

(V)2 (v, - gt)’ o [.. —
(V)2 (v) '-(gt) ' - 2

(V)72 () - (L) Hg () o [V’ .erv —g] [t’ :Zl]v’ > —g*t’ PN
\V&4 ZV [(tg,‘"gt’)

dl Tactic:

Side derivation:

(v 2 v, = gt)’ o
(v)"2 (v, - gt)’ o
(v)"2 (v, - gt)’ o
(V)2 (v) '-(gt) ' -
(V) "2 (v) = (t(g) +g(t")) o
vroo2v, - (tg’+gt’)

H=rp20 &r20&g>0&...

DI Axiom:
[X'=f&H]P—(P & (H—[x:=f]P’))

—_

Example:

[v’=rpv2—g,t’=l]v > Vo o~ gt o
[v/ :=rpv2—g] (t’ :=1]v' 2 -g*t’' o
rpvz—g 2 —g —

Hor ZO
P

Tactics recover a useful level of abstraction.

Pedantry is the price of trust.

Pedantry is the price of trust.

Bellerophon automates pedantic
deductions.

Automation and Tooling

Hybrid Systems Analyses can be built
on top of KeYmaera X.

Examples:
e ODE Solver
e Runtime Monitoring

Toward Automated Deduction
Solving Differential Equations

Use untrusted code Untrusted ODE Solver
to find a conjecture.

- 4

Axiomatic Solver
(Bellerophon Program)

Prove the conjecture //\
.) AXIOM BASE
systematically. N T T A

[x:=t]1£(x) « £(t) KeYmaera X Core Q.E.D.
[a;b]P « [a] [b]P
[aUb]P « ([alP & [b]P)
[a*]P » (J-P & J=[b]J)
[x'=f&H]P o H-P

A\

Toward Automated Deduction

ModelPlex Tactic

Proof KeYmaera X @3¢
Strategy Gg
e -
System - T i i
Model =Rt -
7
E Counter-
i example i

Monitor
Specification

| Design Time

T
I
1

Runtime

model describes controller and physics

Toward Automated Deduction
Learning how to be Safe

Dual Strategy controller with Stochastic Perturbations
A

o~ =1,B=
N Safe+Qo pos
e aM B Safe+Qo Vel
Biaamif B Safe pos
\ Safe vel
8 L
™~
\’\/_,\W
(I~ \/\/M
6 i~
Proof KeYi x @ P N
Strategy — é& —
System
Model
4
Counter-
example Monitor
specification — N|
—
Design
Rui
2 ™\
n | SO | q| P Y
model describes controller and physics
SABEN
NN /‘,\'\/\
0
Ml
1]
|
|
-2 M il &
|l | L
i MEE
Ll -
4 . " ! .
0.0 05 1.0 15 2.0 25 3.0

Time (ctrl every T=0.01 time units)

as

Toward Automated Deduction

Other Proof Automation & Tooling

e Automated Analysis for nonlinear systems:
o Pretty decent automation for systems with univariate
nonlinearities.
o Heuristics for multi-variate systems.

Toward Automated Deduction

Other Proof Automation & Tooling

e Automated Analysis for nonlinear systems:
o Pretty decent automation for systems with univariate
nonlinearities.
o Heuristics for multi-variate systems.
e Heuristic loop invariant generation for control loops

Toward Automated Deduction

Other Proof Automation & Tooling

Automated Analysis for nonlinear systems:

o Pretty decent automation for systems with univariate
nonlinearities.

o Heuristics for multi-variate systems.

Heuristic loop invariant generation for control loops

Taylor Approximations

Toward Automated Deduction

Other Proof Automation & Tooling

Automated Analysis for nonlinear systems:

o Pretty decent automation for systems with univariate
nonlinearities.

o Heuristics for multi-variate systems.

Heuristic loop invariant generation for control loops

Taylor Approximations

Component-based Verification Tooling
Mueller et al., Change and Delay Contracts for Hybrid System Component
Verification, FASE’17 -- Thursday 10:30-12:30

Conclusion

KeYmaera X is a hybrid systems theorem prover with:

e A small and trustworthy prover core and

e Excellent infrastructure for interactively verifying complex
systems and implementing automated analyses.

Conclusion

KeYmaera X is a hybrid systems theorem prover with:

e A small and trustworthy prover core and

e Excellent infrastructure for interactively verifying complex
systems and implementing automated analyses.

Project Website (start here) keymaeraX.org
Online Demo web.keymaeraX.org
GPL’d Source Code github.com/Is-lab/KeYmaeraX-release

Course Materials symbolaris.com/course/fcps17.html

Developers:

Stefan Mitsch
Nathan Fulton
Andre Platzer
Jan-David Quesel
Brandon Bohrer
Yong Kiam Tan
Markus Voelp

Special Thanks:
e 15-424 students, Jean-Baptiste Jeanin, Khalil Ghorbal,
Daniel Ricketts

Parachute Closed:
J & t=0 & r=r -
5 ¢
[x'=v,v' =rv‘-g & 0=x & t<T]v>-sgrt(g/pr) > m

Proof requires a differential
ghost because the property is not
inductive.

V’=rve-g

An example differential ghost.

x>0 - [x"'=-x]x>0

An example differential ghost.

x>0 —» [x'=-x]x>0
Ghost: v/ =y/2
Conserved: |—xy

1 1 1 1 [! 1 1 [[! 1 1 [l [1
0.5 1.0 1.5 210

An example differential ghost.

x>0 —» [x'=-x]x>0
Ghost: v/ =y/2
Conserved: |—xy

Notice:

x>0 o Ty.l=xy’
Therefore, suffices to show:
1=xy’~Avy.[x =-x, v/ J1=xy?

1 1 1 1 [! 1 1 [[! 1 1 [l [1
0.5 1.0 1.5 210

