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Autonomous Safety-Critical Systems

How can we provide people with autonomous cyber-physical 
systems they can bet their lives on?
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Observe

Act

Benefits: 

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and 

checked by hand
● Formal proofs = decades-long 

proof development

Goal: Provably correct reinforcement learning
1. Learn Safely
2. Learn a Safe Policy
3. Justify claims of safety



Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*



Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}* discrete controlContinuous motion



Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}* discrete, non-deterministic
control

Continuous motion



Model-Based Verification
Accurate, analyzable models often exist!

init → [{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc, t’=1}

}*]pos < stopSign



Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees
init → [{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc, t’=1}

}*]pos < stopSign



Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

= ● Computer-checked proofs 
of safety specification.



Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

= ● Computer-checked proofs 
of safety specification

● Formal proofs mapping 
model to runtime monitors
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Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{dx’=w*y, dy’=-w*x, ...}

}*

How to implement?

Only accurate sometimes
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Our Contribution
Justified Speculative Control is an approach 
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without 
sacrificing formal safety results

2. allows and directs speculation whenever 
model mismatches occur
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Learning to Safely Resolve Non-determinism

⇨

Observe & compute 
reward

φ

Main Theorem: If the ODEs are accurate, then 
our formal proofs transfer from the 
non-deterministic model to the learned 
(deterministic) policy via the model monitor.

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) ↔ φ



What about the physical model?

⇨
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reward

φ

Use a theorem prover to prove: (init→
[{{accel∪brake};ODEs}*](safe)) ↔ φ

{pos’=vel,vel’=acc}  ≠
(safe?) 
Policy
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Speculation is Justified

Observe & 
compute 
reward

{brake, accel, turn} Expected
(safe)

Reality
(crash!)



Leveraging Verification Results to Learn Better

Observe & 
compute 
reward

{brake, accel, turn}

Use a real-valued 
version of the 
model monitor as a 
reward signal
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An Example: The Monitor
init → [{

  {?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

  {pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = acc ∧ vpost = accel tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

● Q.E. for RCF
● ODE solutions backed 

by proofs
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An Example: The Reward Signal (simplified)
x>=0 ∧ v>=0 ∧ A>=0  → [{x’ = v, v’ = A}]x>=0

Minimize max(vError, xError) where

vError = max(vpost - (A*tpost + v) , A*tpost + v - vpost)

xError = max(

xpost - (A*tpost
2/2 + v * tpost + x)

(A*tpost
2/2 + v*tpost + x) - xpost

)
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