
Safe Reinforcement Learning via Formal Methods
Nathan Fulton and André Platzer

Carnegie Mellon University

Safety-Critical Systems

"How can we provide people with cyber-physical systems they
can bet their lives on?" - Jeannette Wing

Autonomous Safety-Critical Systems

How can we provide people with autonomous cyber-physical
systems they can bet their lives on?

Model-Based Verification

φ

Reinforcement Learning

Model-Based Verification

pos < stopSign

Reinforcement Learning

Model-Based Verification

pos < stopSign

Reinforcement Learning

ctrl

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.

Model-Based Verification

pos < stopSign

Reinforcement Learning

ctrl

Approach: prove that
control software achieves
a specification with
respect to a model of the
physical system.

Model-Based Verification

pos < stopSign

Reinforcement Learning

ctrl

Benefits:

● Strong safety guarantees
● Automated analysis

Model-Based Verification

φ

Reinforcement Learning

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

Model-Based Verification

φ

Reinforcement Learning

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model

Model-Based Verification

φ

Reinforcement Learning

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model.

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model.

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Benefits:

● Strong safety guarantees
● Automated analysis

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model.

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and

checked by hand
● Formal proofs = decades-long

proof development

Benefits:

● Strong safety guarantees
● Aomputational aids (ATP)

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and

checked by hand
● Formal proofs = decades-long

proof development

Goal: Provably correct reinforcement learning

Benefits:

● Strong safety guarantees
● Aomputational aids (ATP)

Drawbacks:

● Control policies are typically
non-deterministic: answers
“what is safe”, not “what is
useful”

● Assumes accurate model

Model-Based Verification

φ

Reinforcement Learning

Observe

Act

Benefits:

● No need for complete model
● Optimal (effective) policies

Drawbacks:

● No strong safety guarantees
● Proofs are obtained and

checked by hand
● Formal proofs = decades-long

proof development

Goal: Provably correct reinforcement learning
1. Learn Safely
2. Learn a Safe Policy
3. Justify claims of safety

Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*

Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}* discrete controlContinuous motion

Model-Based Verification
Accurate, analyzable models often exist!

{

{?safeAccel;accel∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}* discrete, non-deterministic
control

Continuous motion

Model-Based Verification
Accurate, analyzable models often exist!

init → [{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc, t’=1}

}*]pos < stopSign

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees
init → [{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc, t’=1}

}*]pos < stopSign

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

= ● Computer-checked proofs
of safety specification.

Model-Based Verification
Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

= ● Computer-checked proofs
of safety specification

● Formal proofs mapping
model to runtime monitors

Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{pos’ = vel, vel’ = acc}

}*

How to implement?

Only accurate sometimes

Model-Based Verification Isn’t Enough
Perfect, analyzable models don’t exist!

{

{ ?safeAccel;accel ∪ brake ∪ ?safeTurn; turn};

{dx’=w*y, dy’=-w*x, ...}

}*

How to implement?

Only accurate sometimes

Our Contribution
Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without
sacrificing formal safety results

Our Contribution
Justified Speculative Control is an approach
toward provably safe reinforcement learning that:

1. learns to resolve non-determinism without
sacrificing formal safety results

2. allows and directs speculation whenever
model mismatches occur

Learning to Resolve Non-determinism

Observe &
compute
reward

Act

Learning to Resolve Non-determinism

Observe &
compute
reward

accel ∪ brake U turn

Learning to Resolve Non-determinism

Observe &
compute
reward

{accel,brake,turn}

Learning to Resolve Non-determinism

⇨

Observe &
compute
reward

Policy

{accel,brake,turn}

Learning to Resolve Non-determinism

⇨

Observe &
compute
reward

(safe?)
Policy

{accel,brake,turn}

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

(safe?)
Policy

Safety Monitor

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

(safe?)
Policy

Safety Monitor

≠ “Trust Me”

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

(safe?)
Policy

φ

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) ↔ φ

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

(safe?)
Policy

φ

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) ↔ φ

(safe?)
Policy

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

φ

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the
non-deterministic model to the learned
(deterministic) policy

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) ↔ φ

(safe?)
Policy

Learning to Safely Resolve Non-determinism

⇨

Observe & compute
reward

φ

Main Theorem: If the ODEs are accurate, then
our formal proofs transfer from the
non-deterministic model to the learned
(deterministic) policy via the model monitor.

Use a theorem prover to prove:

(init→[{{accel∪brake};ODEs}*](safe)) ↔ φ

What about the physical model?

⇨

Observe & compute
reward

φ

Use a theorem prover to prove: (init→
[{{accel∪brake};ODEs}*](safe)) ↔ φ

{pos’=vel,vel’=acc} ≠
(safe?)
Policy

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

Model is
inaccurate

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn}

Model is accurate.

Model is
inaccurate

Obstacle!

What About the Physical Model?

Observe &
compute
reward

{brake, accel, turn} Expected

Reality

Speculation is Justified

Observe &
compute
reward

{brake, accel, turn} Expected
(safe)

Reality
(crash!)

Leveraging Verification Results to Learn Better

Observe &
compute
reward

{brake, accel, turn}

Use a real-valued
version of the
model monitor as a
reward signal

An Example

An Example: The System
init → [{

 {?safeAccel;accel ∪ brake ∪ ?safeMaint; maintVel};

 {pos’ = vel, vel’ = acc, t’=1}

}*]safe

An Example: The Monitor
init → [{

 {?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

 {pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = acc ∧ vpost = acc tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

An Example: The Monitor
init → [{

 {?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

 {pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = acc ∧ vpost = acc tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

An Example: The Monitor
init → [{

 {?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

 {pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = accel ∧ vpost = acc tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

An Example: The Monitor
init → [{

 {?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

 {pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = acc ∧ vpost = accel tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

An Example: The Monitor
init → [{

 {?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

 {pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = acc ∧ vpost = accel tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

An Example: The Monitor
init → [{

 {?safeAccel;accel ∪ brake ∪ ?safeMaintain; maintainVel};

 {pos’ = vel, vel’ = acc, t’=1}

}*]safe

(tpost >= 0 ∧ apost = acc ∧ vpost = accel tpost + v ∧ ppost = acc tpost
2/2 + v tpost + p) ∨

(tpost >= 0 ∧ apost = 0 ∧ vpost = v ∧ ppost = vtpost + p) ∨ Etc.

● Q.E. for RCF
● ODE solutions backed

by proofs

An Example: The Reward Signal (simplified)

x>=0 ∧ v>=0 ∧ A>=0 → [{x’ = v, v’ = A}]x>=0

An Example: The Reward Signal (simplified)
x>=0 ∧ v>=0 ∧ A>=0 → [{x’ = v, v’ = A}]x>=0

Minimize max(vError, xError) where

vError = max(vpost - (A*tpost + v) , A*tpost + v - vpost)

xError = max(

xpost - (A*tpost
2/2 + v * tpost + x)

(A*tpost
2/2 + v*tpost + x) - xpost

)

Conclusion
Justified Speculative Control provides the best of logic and learning:

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)
● Learn how to resolve non-determinism in models.

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)
● Learn how to resolve non-determinism in models.
● Leverage theorem proving to transfer proofs to learned policies.

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)
● Learn how to resolve non-determinism in models.
● Leverage theorem proving to transfer proofs to learned policies.
● Unsafe speculation is justified when model deviates from reality

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)
● Learn how to resolve non-determinism in models
● Leverage theorem proving to transfer proofs to learned policies
● Unsafe speculation is justified when model deviates from reality,

but verification results can still be helpful!

⇨
Policy

φ

Conclusion
Justified Speculative Control provides the best of logic and learning:

● Formally model the control system (control + physics)
● Learn how to resolve non-determinism in models
● Leverage theorem proving to transfer proofs to learned policies
● Unsafe speculation is justified when model deviates from reality,

but verification results can still be helpful!

⇨
Policy

φ

