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Andrè Platzer, Chair

Jeremy Avigad
Goran Frehse
Stefan Mitsch
Zico Kolter

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 Nathan Fulton



July 23, 2018
DRAFT

Keywords: Cyber-Physical Systems, Hybrid Systems, Autonomous Systems, Formal Verifi-
cation, Differential Dynamic Logic, Automated Theorem Proving, Reinforcement Learning



July 23, 2018
DRAFT

Abstract
This thesis focuses on verifiably safe reinforcement learning for cyber-physical

systems. Cyber-physical systems, such as autonomous vehicles and medical de-
vices, are increasingly common and increasingly autonomous. Designing safe cyber-
physical systems is difficult because of the interaction between the discrete dynamics
of control software and the continuous dynamics of the vehicle’s physical movement.

Formal methods capable of reasoning about these hybrid discrete-continuous dy-
namics can help engineers obtain strong safety guarantees about safety-critical con-
trol systems. Several recent successes in applying formal methods to hybrid dynam-
ical systems demonstrate that these tools provide a promising foundation for estab-
lishing safety properties about planes, trains, and cars. However, existing theory and
tooling does not explain how to obtain formal safety guarantees for systems that use
reinforcement learning to discover efficient control policies from data. This gap in
existing knowledge is important because modern approaches toward building cyber-
physical systems combine machine learning with classical controls engineering to
navigate in open environments.

Previously completed work introduces KeYmaera X, a theorem prover for hy-
brid systems and uses KeYmaera X to obtain verified safety guarantees for control
policies generated by reinforcement learning algorithms. These contributions enable
strong safety guarantees for optimized control policies when the underlying environ-
ment matches a first-principles model. However, classical hybrid systems verifica-
tion results do not provide guarantees for systems that deviate from an engineer’s
modeling assumptions.

This thesis introduces an approach toward providing safety guarantees for learned
control policies even when reality deviates from modeling assumptions. The core
technical contribution will be a new class of algorithms that learn safe ways to update
a model in response to newly observed dynamics in the environment. We propose
achieving this goal by discovering verification-preserving model updates (VPMUs),
thus leveraging hybrid systems theorem proving during the learning process. These
contributions will provide verifiable safety guarantees for systems that are controlled
by policies obtained through reinforcement learning, justifying the use of reinforce-
ment learning in safety-critical settings.
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Chapter 1

Introduction

The automotive and aeronautical industries have continually improved the energy-efficiency,
safety, comfort and automation of vehicles. Achieving these improvements required substan-
tially increasing the size and complexity of vehicle software. The growing use of software in
these safety-critical settings inspired the development of mathematical models – called hybrid
systems – that model the interaction between discrete software systems and the continuous sys-
tems under control. Hybrid systems provide a fruitful formalism for stating and proving safety
properties about systems that combine discrete computation with continuous control.

Over the past decade, designers of vehicles have moved on from low-level control problems.
Tomorrow’s software systems not only help control the engine and the brakes, but also make
high level decisions about where and how a vehicle should move. Advanced driver-assist sys-
tems are already deployed. Most major automobile manufacturers are experimenting with fully
autonomous vehicles. Designers of planes and trains are also deploying partially autonomous ve-
hicles and experimenting with fully autonomous systems. The future of mobility is autonomous.
These autonomous systems make extensive use of machine learning, such as reinforcement learn-
ing, to control in open environments. Therefore, designing safe autonomous cyber-physical sys-
tems requires establishing safety properties about systems that use reinforcement learning and
other optimization techniques for control.

Unlike traditional software engineering domains where light-weight quality assurance mech-
anisms (e.g., testing) often suffice, best practices for safety-critical systems suggest the use of
formal verification. Ideally, developers of safety-critical systems should construct a model of the
system under control and then write a formal, computer-checked proof that their control software
satisfies key safety properties with respect to the underlying model. For example, a developer
might construct a system of differential equations describing how a car behaves and then prove
that a piece of control software prevents the car from entering an unsafe state. Formal proofs of
relevant safety properties ensure that a system is verifiably safe.

The proposed thesis will demonstrate that autonomous cyber-physical systems that use
reinforcement learning for control are amenable to formal verification.

1
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1.1 Proposed Work
Fully autonomous systems that make use of both offline and online learning will need to come
with strong safety guarantees. Therefore, developing formal methods that are capable of provid-
ing safety guarantees for modern learning algorithms is an important challenge.

Despite recent successes in modeling and verifying safety properties about cyber-physical
systems, existing hybrid systems verification approaches are not directly applicable to modern
reinforcement learning algorithms. Classical software verification tools capable of verifying
properties about reinforcement learning algorithms do not provide productive environments for
hybrid systems verification. Conversely, existing verification tools specialized to hybrid systems
analysis only describe relatively simple software. These simple descriptions of discrete dynam-
ical systems are not productive environments for stating and proving properties about reinforce-
ment learning algorithms. This thesis show how to use hybrid systems analysis tools to provide
safety guarantees for systems that use reinforcement learning without resorting to encoding the
entire reinforcement learning algorithm as an explicit part of the hybrid system.

Verifiably safe autonomy is an epistemically challenging goal. Verification results for cyber-
physical systems are always with respect to a model of the world, but autonomy implies the
ability to act reasonably even in situations that were not explicitly modeled by system designers.
For this reason, our recent work toward verifiably safe autonomy distinguishes between states
where the model is accurate and states where the model is inaccurate [40]. In this work, we
establish that verification results transfer to policies obtained by learning whenever the model is
accurate. We also suggest a way of deriving reasonable reward functions when the system goes
off-model. However, this heuristic does not come with any guarantees.

Our approach toward verifiably safe autonomy will leverage existing cyber-physical systems
verification tooling developed by the author and his collaborators over the past several years.
Using this theory and tooling, we will extend our previous work [40] to provide formal safety and
convergence guarantees even when the system goes off-model. The core technical contribution
of this approach will be a way of updating models of cyber-physical systems in a way that
preserves verification results and comports with observed deviations from an initial model. We
will evaluate this contribution by learning model updates for systems with nonlinear continuous
dynamics and complex safe control envelopes. The remainder of this proposal is organized as
follows:
• Chapter 2 introduces the logic underlying our proposed approach.
• Chapter 3 presents our prior work on verifying hybrid systems and discusses related work

on theorem proving and hybrid systems reachability analysis.
• Chapter 4 outlines our current approach toward verifying cyber-physical systems that uses

reinforcement learning for control and compares our prior contributions on this topic with
other work on safe/verifiable reinforcement learning.

• Chapter 5 discusses our proposed extensions to the work described in Chapter 4 and com-
pares our proposed contributions to other work on program repair and program synthesis.

Discussion of related work occurs in Chapter 3, Chapter 4, and Chapter 5; Section 5.3 summa-
rizes all of these discussions in Table 5.1.
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Chapter 2

Background

The proposed thesis will show that cyber-physical systems that use reinforcement learning for
control are amenable to formal verification. Achieving this goal requires combining formal veri-
fication results about hybrid systems with reinforcement learning algorithms. This chapter intro-
duces differential dynamic logic (a logic for proving reachability properties of hybrid systems)
and classical reinforcement learning algorithms.

2.1 Formal Verification of Hybrid Systems
Hybrid dynamical systems [7, 88] are dynamical systems that combine discrete and continuous
dynamical systems. Hybrid dynamical systems are a compelling mathematical formalism for
describing the mixture of discrete control and continuous movement that characterizes cyber-
physical systems. Designers of control systems often wish to prove that a given hybrid system
does not reach an unsafe state; these properties are called reachability properties.

This section presents a programming language for describing hybrid dynamical systems
called hybrid programs, introduces a differential dynamic logic (dL) for specifying reachabil-
ity properties of hybrid programs, and demonstrates how dL is used to specify safety properties
of hybrid programs.

2.1.1 Hybrid Programs
Hybrid programs [86, 87, 88] are a programming language model of hybrid dynamics. Hybrid
programs extend nondeterministic imperative programs (i.e., regular programs) with differential
equations. Usually, the discrete portion of a hybrid program describes a nondeterministic set
of safe control actions and the continuous portion of a hybrid program describes the physical
movement of the system. Although hybrid systems are an expressive mathematical tool capable
of accurately modeling a broad range of physical and sociological phenomena, this thesis focuses
on the use of hybrid systems to model control systems, such as those found in partially and fully
autonomous vehicles. An informal description of hybrid programs is given in Table 2.1.
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Program Statement Meaning
α; β Sequentially composes α and β.
α ∪ β Executes either α or β.
α∗ Repeats α zero or more times.
x := θ Evaluates θ and assign result to x.
x := ∗ Assigns an arbitrary real value to x.
{x′1 = θ1, ..., x

′
n = θn&F} Continuous evolution1.

?F Aborts if F is not true.

Table 2.1: Hybrid Programs

Example 1 (The Linear Car Program) One of the simplest hybrid programs models a car mov-
ing along a straight line, choosing a new acceleration a ∈ {−B,A} at least once every T
seconds.

Listing 2.1: The Linear Car Program
1 {
2 //Choose a new acceleration accel ∈ {−B,A}
3 { accel := -B ∪ accel := A }
4 //Reset the timer.
5 c := 0;
6 //System dynamics describing linear motion for at most T time.
7 { pos’=vel, vel’=accel, c’=1 & c ≤ T }
8 }* //loop 0 or more times

Example 1 allows only two choices of acceleration: maximum acceleration A or maximum
braking −B. A more realistic model allows the choice of any acceleration accel ∈ [−B,A].
This behavior is expressible in dL by changing line 3 of Example 1 to read:

accel := *; ?(-B≤ accel ∧ accel≤ A).
This program first allows accel to take on any value, and then immediately asserts that this new
value of accel must be between −B and A.

Semantics Hybrid Programs have a denotational semantics defined in terms of states. A state
is a mapping from one set of variable assignments to another set of variable assignments. The
semantics of a program, denoted JαK, maps a state to a set of states.

The semantics of assignment and nondeterministic choice are illustrative examples of how
the semantics of hybrid programs are defined. Assignment maps each state s to a new state s′

that is identical to s except for the new value of x. Formally, Jx := θK(s) = {(s, sx→θ)} The
semantics of nondeterministic choice α∪β maps each state s to two new states: one which results
from executing α and the other which results from executing β. Formally,

Jα ∪ βK(s) = JαK(s) ∪ JβK(s)
1A continuous evolution along the differential equation system x′i = θi for an arbitrary duration within the region

described by formula F .

4
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2.1.2 Differential Dynamic Logic
Differential dynamic logic (dL) [86, 87, 88, 90] is a first-order multimodal logic for specifying
and proving properties of hybrid programs. Each hybrid program α has modal operators [α] and
〈α〉, which express reachability properties of program α. The formula [α]φ expresses that the
formula φ is true in all states reachable by the hybrid program α. Similarly, 〈α〉φ expresses that
the formula φ is true after some execution of α.
Definition 1 (Formulas) The formulas of dL are defined as follows (with θ as terms, p as pred-
icates, C as quantifier symbols, and φ, ψ ranging over dL formulas):
〈φ, ψ〉 ::= θ ≥ η Comparisons
| p(θ1, . . . , θk) Predicates
| C(φ) Quantifier Symbols
| ¬φ | φ ∧ ψ | ∀x φ | ∃x ψ First-order Logic
| [α]φ | 〈α〉φ Modalities

The grammar given by Def. 1 is the minimal. In practice, hybrid systems reachability prop-
erties formalized in dL also make use of disjunction, implication, and equivalences:

θ, ψ ::= . . . | φ ∨ ψ | φ→ ψ | φ↔ ψ

The formal denotational semantics of dL assign to each formula the set of states in which the
formula evaluates to true. For example, Jx > 0 ∧ y > 0K = {s | s(x) > 0 ∧ s(y) > 0}. The
intuitive meaning of formulas that do not contain modalities matches that of classical first order
logic.
Example 2 Consider a car, moving in a straight line, that must stop before arriving at a stop
sign. This property is expressible in dL by the formula

Listing 2.2: The Linear Car Program
1 A > 0 ∧ B > 0 ∧ pos < stopSignPos() ∧ safe(pos, vel, -B) →
2 [
3 {
4 //Choose a new accleeration accel ∈ [−B,A],
5 //accerlating only when safe.
6 { accel := -B ∪ accel := *; ?safe(pos, vel, accel) }
7 //Reset the timer.
8 c := 0;
9 //System dynamics describing linear motion for at most T time.

10 { pos’=vel, vel’=accel, c’=1 & c ≤ T }
11 }* //loop 0 or more times
12 ]pos < stopSignPos()

where stopSignPos() is the location of the stop sign and safe: R3 → Bool is a to-be-defined
formula describing the set of positions and velocities in which it is safe to accelerate.

Example 2 is a reachability property of a simple hybrid dynamical system with the canonical
form init→[{ctrl; plant}*]safe. Here, the system begins within some initial set init,
repeatedly executes a discrete controller ctrl followed by some continuous physical dynamics
described by the system of differential equations plant, and always ends in a state that satisfies
safe.

5
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The premise (or precondition) of Example 2 describes a set of initial states for the hybrid
dynamical system. Aside from bounds on constants, we must also assume that the car begins
in a configuration such that continuously braking will bring the car to a complete stop before
reaching the stop sign. The precondition safe(pos, vel, -B) expresses this assumption. The
conclusion of the implication states that every execution of Example 1 ends in a state where
pos < stopSignPos().

Compiling Nondeterminism Notice that the model is nondeterministic and is specifically de-
signed to capture a safety property. The controller model does not choose a single action; instead,
the model describes an entire set of possible safe actions. The physical model does not choose
an exact amount of time to follow the flow of the ODEs; instead, any flow up to time 0 ≤ c ≤ T
is possible. Furthermore, the verification condition does not mention fuel efficiency, passenger
comfort, or other important fitness criteria.

Verification conditions capture only the critical safety property of the system. Both of these
modeling choices are crucial for ensuring the tractability of hybrid systems analyses; a fully
deterministic description of the system would prove intractable to verify automatically. Even
interactive verification might be too labor intensive in many cases.

The reinforcement learning algorithms developed in this thesis provide a way to choose effi-
cient resolutions to this nondeterminism that satisfy safety constraints while also optimizing for
other objectives. Reinforcement learning may be viewed as an optimizing compiler for nonde-
termistic and underspecified models. The safety constraints specified in dL may be viewed as a
constraint this optimization process.

2.1.3 The dL Hilbert Calculus

Proving specifications such as Example 2 requires a sound set of axioms and proof rules for dL.
The KeYmaera X theorem prover implements a Hilbert-style proof calculus with three compo-
nents: a set of axioms, proof rules for performing uniform substitutions, and contextual rewriting
proof rule.

Axioms The axioms and proof rules of dL from [89] are enumerated in Figures 2.1 and 2.2.
These axioms are designed to support compositional proofs of dL formulas by decomposing
formulas and programs into their constituent parts. For example, the axiom of nondeterministic
choice [a∪b]p(x̄)↔ [a]p(x̄)∧ [b]p(x̄) decomposes a reachability property for a nondeterministic
hybrid system into two reachability properties, one for each of the constituent programs in the
nondeterminstic choice. The predicate p(x̄) may bind all variables x ∈ x̄.

In typical verification tasks, the axioms in Fig. 2.1 are used to symbolically decompose regu-
lar programs and the axioms in Fig. 2.2 enable various reasoning techniques for handling ordinary
differential equations. For example, we used the axioms in Fig. 2.2 to implement an Ordinary
Differential Equation solver based on logical deductions and have also implemented reasoning
techniques based on differential invariants [41]. The CE proof rule allows for equational rewrit-
ing of equivalent subformulas, whereas CQ and CT allow for equational rewriting of equal terms.

6
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〈·〉 〈a〉p(x̄)↔ ¬[a]¬p(x̄)

[:=] [x := f ]p(x)↔ p(f)

[?] [?q]p↔ (q → p)

[∪] [a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

[;] [a; b]p(x̄)↔ [a][b]p(x̄)

[∗] [a∗]p(x̄)↔ p(x̄) ∧ [a][a∗]p(x̄)

K [a](p(x̄)→ q(x̄))→ ([a]p(x̄)→ [a]q(x̄))

I [a∗](p(x̄)→ [a]p(x̄))→ (p(x̄)→ [a∗]p(x̄))

V p→ [a]p

G
p(x̄)

[a]p(x̄)

∀
p(x)

∀x p(x)

MP
p→ q p

q

CT
f(x̄) = g(x̄)

c(f(x̄)) = c(g(x̄))

CQ
f(x̄) = g(x̄)

p(f(x̄))↔ p(g(x̄))

CE
p(x̄)↔ q(x̄)

C(p(x̄))↔ C(q(x̄))

US
ϕ

σ(ϕ)

Figure 2.1: Axioms and proof rules of differential dynamic logic; C is a quantifier symbol, p, q
are predicate symbols, and c, f, g are function symbols.

Uniform Substitutions Typical axiom systems contain a countably infinite number of axioms
generated from a finite set of axiom schemata. The Hilbert axiomatization of dL does not have
axiom schemata; rather, it has a finite number of axioms, a finite number of proof rules (repre-
sented as sets of formulas), and a proof rule called Uniform Substitution (US) for performing
soundness-preserving substitutions on these axioms. For example, consider the axiom of nonde-
terministic choice

[a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

Notice that a and b are concrete atomic programs, and that p(x̄) is a concrete predicate. The
choice axiom alone is not enough to prove

[x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 1

Uniform substitutions provide a mechanism for using axioms that mention generic programs and
predicates to prove theorems that contain concrete programs and formulas.

Uniform substitutions are mappings from functions f(x̄) to terms, predicate symbols p(x̄)
to formulas, quantifier symbols C( ) to formulas, and program constants a to programs where
x̄ is a set of variables that may be bound and a reserved quantifier symbol of arity zero. We
may also use p(·) where · means that p may mention any variable. The substitution a  x := 0
substitutes any occurrence of the program variable a with program x := 0. And p(·)  x ≥ 0
substitutes a predicate p(θ) with a formula θ ≥ 0 for any argument term θ. For example, the
substitution

a x := 0

b x := 1

p(x̄) x ≥ 0

7
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DW [x′ = f(x) & q(x)]q(x)

DC
(
[x′ = f(x) & q(x)]p(x)↔ [x′ = f(x) & q(x) ∧ r(x)]p(x)

)
← [x′ = f(x) & q(x)]r(x)

DE [x′ = f(x) & q(x)]p(x, x′)↔ [x′ = f(x) & q(x)][x′ := f(x)]p(x, x′)

DI [x′ = f(x) & q(x)]p(x)←
(
q(x)→ p(x) ∧ [x′ = f(x) & q(x)](p(x))′

)
DG [x′ = f(x) & q(x)]p(x)↔ ∃y [x′ = f(x), y′ = a(x)y + b(x) & q(x)]p(x)

DS [x′ = f & q(x)]p(x)↔ ∀t≥0
(
(∀0≤s≤t q(x+ fs))→ [x := x+ ft]p(x)

)
[′:=] [x′ := f ]p(x′)↔ p(f)

+′ (f(x̄) + g(x̄))′ = (f(x̄))′ + (g(x̄))′

·′ (f(x̄) · g(x̄))′ = (f(x̄))′ · g(x̄) + f(x̄) · (g(x̄))′

◦′ [y := g(x)][y′ := 1]
(
(f(g(x)))′ = (f(y))′ · (g(x))′

)
Figure 2.2: Differential equation axioms and differential axioms

with x̄ = {x} applied to the choice axiom [a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄) produces the formula

[x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 1

A substitution is uniform if it satisfies various constraints on the occurrences of free and bound
variables. The uniformity constraint is required to ensure the soundness of the uniform substitu-
tion proof rule. Logical deductions in dL may appeal to the truth-preserving nature of substitu-
tions via the US proof rule (Fig. 2.1).
Example 3 (Admissible and Clashing Substitutions) Restricting the US proof rule to admis-
sible uniform substitutions is necessary for preserving the soundness of the calculus. Consider
the substitution and formula

σ = {a x := x− 1, p x ≥ 0}
φ ≡ p→ [a]p.

If σ were admissible for φ (it is not!), then the US proof rule would allow a proof of
x ≥ 0→ [x := x− 1]x ≥ 0

∗
p→ [a]p

x ≥ 0→ [x := x− 1]x ≥ 0

but this formula is clearly not valid. Conversely, consider the very similar substitution σ′ and the
formula ϕ:

σ′ = {a x := x− 1, p(x̄) x ≥ 0}
ϕ ≡ [a]p(x̄)

for x̄ = (x). Because σ′ is ϕ-admissible, the US proof rule allows the deduction following

x ≥ 0

[x := x− 1]x ≥ 0

8
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via a uniform substitution on the G proof rule.

Example 3 demonstrates that the US rule is not sound for naı̈ve substitutions. A sound calcu-
lus must restrict uniform substitutions so that substitutions which introduce unsound deductions
are not permitted. For this purpose, dL defines when a given substitution is admissible for a
formula and restricts the US proof rule so that the rule is only applicable when the substitution
σ is φ-admissible. The two cases in Example 3 demonstrate why admissibility of a substitution
depends upon the formula to which a substitution is applied – a substitution may be sound for
one formula and unsound for another.

The slight difference between the substitutions σ and σ′ in Example 3 demonstrates the signif-
icance of the difference between p, p(x), and p(x̄). These three predicate symbols have different
static semantics. The first symbol (p) has a nullary predicate symbol The second (p(x)) has a
predicate symbol where the variable x may occur freely, and the third (p(x̄)) has a predicate
symbol where any x ∈ x̄ may occur freely. These free variables of p continue to be permitted in
its replacement. Additional free variables are allowed by the US rule under certain admissibility
conditions (see [89]).

The definition of admissibility depends upon the static semantics of dL formulas, so this
difference in the static semantics of p, p(x), and p(x̄) is crucial when determining whether a
substitution is admissible.

The explication of admissibility for uniform substitutions in dL is critical for soundness but
non-trivial (see [89] for details). Therefore, the results presented in this thesis paper abstract
over the particularities by simply assuming the existence of a mechanism for checking whether
a given substitution is admissible for a given formula and assuming that there is therefore a
sound implementation of the US proof rule. Readers interested in a constructive definition of
admissibility for uniform substitutions in dL may consult Platzer (in particular, Fig. 1) [89]. In
this thesis we use dL and its axiomatization [89] as implemented by KeYmaera X for verifying
hybrid systems models of cyber-physical systems.

2.2 Reinforcement Learning

Reinforcement learning (RL) [98] is one approach toward learning control policies. Reinforce-
ment learning algorithms search for effective control strategies by taking actions, observing how
these actions change an underlying environment, and then computing a numerical reward based
upon some combination of the actions taken and the observed changes to the environment.

Most approaches toward reinforcement learning provide no guarantee about the safety of the
learned controller or about the safety of actions taken during learning. Absence of safety guaran-
tees becomes a crippling problem when reinforcement learning is applied to safety-critical CPSs
where industry best practices demand evidence of safety, such as cars or planes [59, 94]. Incorpo-
rating verified models into safety cases for reinforcement learning-based controllers is important
because testing alone is an intractable approach toward system verification and validation for
systems operating in open environments, such as self-driving cars [63].

Reinforcement Learnining is an enormous research area, and many approaches toward incor-
porating formal methods into reinforcement learning were recently proposed. A discussion of

9
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this and other related work on safe reinforcement learning is postponed until Chapter 4 so that
this work may be presented in terms of our current and proposed contributions.

10
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Chapter 3

Trustworthy Theorem Proving for Hybrid
Dynamics

The proposed thesis will show that cyber-physical systems that use reinforcement learning for
control are amenable to formal verification. Formal verification requires the use of analysis
software, such as a model checker or a theorem prover. Analysis software must be trustworthy;
an untrustworthy tool translates uncertainty about the system under analysis into uncertainty
about the analysis tool. Analysis software must also be useful; a maximally trustworthy analysis
tool that cannot even establish simple properties about simple systems is not useful in practice.

In previous work with collaborators, I developed a trustworthy interactive theorem prover for
hybrid dynamical systems called KeYmaera X. The distinguishing features of KeYmaera X are
a small soundness-critical core that ensures the correctness of the system, and a tactics language
called Bellerophon for implementing custom hybrid systems proof construction and proof search
procedures on top of the small core. This combination of a small core with a hybrid systems
proof programming environment make KeYmaera X the most trustworthy and extensible hybrid
systems analysis tool available today.

3.1 The KeYmaera X Core

KeYmaera X [41] is structured to maintain a trustworthy core. The KeYmaera X core is trust-
worthy because it is a small and simple piece of software with a defined logical foundations.

The KeYmaera X implementation of the dL Hilbert calculus is attractive from a soundness
perspective because it is simple and small. The implementation contains two main components:
a text file containing verbatim copies of axioms, and a small amount of Scala code implementing
the proof rules (including Uniform Substitution). All reasoning executed by the KeYmaera X
theorem prover runs through this small, soundness-critical core. Unlike existing foundations of
hybrid systems, the Hilbert calculus of dL easily enables sound theorem prover implementa-
tions. Unlike existing hybrid systems analysis tools, KeYmaera X isolates all soundness-critical
reasoning in a small core.
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3.1.1 Proof Terms for dL
Differential dynamic logic has an implicit notion of proof; there is no way of saying, in the logic,
that some sequence of proof rule applications results in a proof of a dL formula. Type theories
[27, 76] and justification logics [12, 13] have explicit notions of proof; instead of only formulas
ϕ these logics also have formulas of the form t : ϕ meaning t is a proof of ϕ. Theorem proving
tools built on logics with an explicit notion of proof have many attractive qualities, including an
explicit syntax for exporting proofs generated by the theorem prover. In prior work we designed
a Logic of Proofs for Differential Dynamic Logic, a dL Hilbert calculus with explicit proof terms
motivated by justification logic[39]

In an effort to improve the reliability and interoperability of the KeYmaera X theorem prover,
we designed the Logic of Proofs for Differential Dynamic Logic, a dL Hilbert calculus with
explicit proof terms[39].

In separate work, Bohrer et al. implemented verified implementations of a differential dy-
namic logic proof checker in both Isabelle and Coq. Using their implementation of a variant of
our proof term calculus, these researchers were able to export proofs generated by KeYmaera X.
These exported proofs were then checked by these other theorem provers. The verified imple-
mentations of dL proof checkers increase our confidence in the soundness of the dL Hilbert
calculus and allows interfacing with other verification efforts.

3.1.2 Challenges Introduced by the dL Hilbert Calculus
Unfortunately, getting real work done in this raw Hilbert calculus is nontrivial. Even simple
properties have verbose proofs. For example, the proof of [x := 0 ∪ x := 1]x ≥ 0 is far from
concise [39]:

*[∪]
[a ∪ b]p(x̄)↔ [a]p(x̄) ∧ [b]p(x̄)

US
[x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0 ∆

MP
[x := 0 ∪ x := 1]x ≥ 0

with x̄ = {x} where ∆ =

∆1 ∆2Prop
[x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0

Prop
([x := 0 ∪ x := 1]x ≥ 0↔ [x := 0]x ≥ 0 ∧ [x := 1]x ≥ 0)→ [x := 0 ∪ x := 1]x ≥ 0

where ∆1 =

*[:=]
[x := t]p(t)↔ p(x)

US
[x := 0]x ≥ 0↔ 0 ≥ 0

*R 0 ≥ 0Prop
[x := 0]x ≥ 0↔ 0 ≥ 0→ [x := 0]x ≥ 0

MP
[x := 0]x ≥ 0

and ∆2 =

12
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*[:=]
[x := t]p(t)↔ p(x)

*R 1 ≥ 0
MP, Prop, US

[x := 1]x ≥ 0

This lengthy derivation (which still elides some details!) demonstrates that although the
Hilbert calculus provides a compelling target for sound theorem prover implementations, even
trivial hybrid systems reachability properties require extremely verbose proofs.

3.2 Bellerophon: Tactical Theorem Proving for Hybrid Sys-
tems

Practical use of the dL Hilbert calculus requires careful design of interactive and automated the-
orem proving that leverage the simplicity of the Hilbert calculus to ensure soundness while also
enabling verification of complex reachability properties for realistic models of cyber-phyiscal
systems.

Bellerophon, introduced by Fulton et al. [42], is a programming language and standard li-
brary for constructing dL proofs in KeYmaera X. Bellerophon implements a high-level sequent
calculus on top of the simpler dL Hilbert calculus, enabling human-readable proofs for realistic
hybrid systems. The standard library also contains several automatic proof search procedures,
called tactics, that can automatically prove properties about common subclasses of hybrid sys-
tems. Bellerophon’s combinators provide a mechanism for composing these building blocks in
to proof construction procedures and proof search algorithms. As a result, the verbose proof pre-
sented above reduces to the very small Bellerophon program invoking tactics in the Bellerophon
standard library:

1 choiceb(1); <(
2 //[x:=0]x>=0 case
3 assignb(1); QE
4 ,
5 //[x:=1]x>=0 case
6 assignb(1); QE
7 )

This tactic splits the proof into one case for each program on either side of the nondeter-
ministic choice operator ∪. In each of these cases, the assignment is symbolically executed to
produce a purely arithmetic subgoal, which is then discharged using a decision procedure for real
arithmetic. The primary automated theorem prover implemented in KeYmaera X, master, will
automatically construct this tactic.

3.2.1 Encoding General Results about Dynamical Systems in KeYmaera X
Despite the relative simplicity and small size of the KeYmaera X core, Bellerophon and KeY-
maera X are capable of expressing many properties about continuous dynamical systems.

One significant tactic is the axiomatic ODE solver, which uses the axioms and proof rules
of dL to prove the existence of solutions to a subset of linear ordinary differential equations.
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The ODE solver, written by the author of this proposal, provides validated solutions to differ-
ential equations and is one of the largest tactics in the Bellerophon standard library. The Mod-
elPlex algorithm [79], which generates runtime monitors for hybrid systems, is implemented as
a Bellerophon tactic and makes essential use the axiomatic ODE solver.

KeYmaera X and dL are designed for hybrid program verification, not general-purpose math-
ematics. Therefore, the variety of results about dynamical systems that are encodable using a
combination of dL and Bellerophon tactics is often surprising. The Axiomatic ODE Solve is
a great example of this surprising expressiveness. The existence of closed-form solutions for
linear systems is not directly expressible in dL. However, a schema of dL formulas describing
all such systems combined with a Bellerophon tactic that can prove the invariance of a solution
for any system in this schema produces the same result. The dL formulaic schema is a theorem
about a general class of dynamical systems, and the Bellerophon tactic generates a proof for each
formula in the schema.

Bifurcation theory provides another nice example of the often surprising expressiveness of
KeYmaera X and Bellerophon. The existence of a bifurcation point in the 1D saddle-node [69]
– and the location of the fixed points of the system on either side of this bifurcation – can be
encoded in dL and Bellerophon. The following dL formula encodes the fact that some fixed
point f exists for any choice of a parameter r ≤ 0: r ≤ 0→ ∃f(x = f → [x′ = r + x2]x = f)

The proof of this property must identify the bifurcation point at r = 0 and discover the
corresponding fixed points (f = −

√
−r when r < 0 and f = 0 when r = 0):

The equilibrium points on either side of the 1D saddle-node bifurcation1

1 /* Move r <= 0 to the antecedent */
2 implyR(1);
3 /* Introduce and prove r = 0 ∨ r < 0 so that we can split the
4 * rest of our analysis along this bifurcation. */
5 cut(r = 0 ∨ r < 0); <(hideL(-1), hideR(1) ; QE);
6 /* Split the proof. */
7 orL(-1); <(
8 /* CASE 1: r=0 */
9 existsR({‘0‘}, 1); /* choose f=0 */

10 implyR(1);
11 dG({y′ = −xy}, yx = 0 ∧ y > 0, 1); /* x = 0↔ ∃y(yx = 0 ∧ y > 0) */
12 existsR({‘1‘}, 1); /* choose y 6= 0; e.g., y = 1 */
13 /* Consider y*x=0 and y>0 differential invariants separately */
14 boxAnd(1); andR(1); <(
15 /* y*x=0 is differentially inductive because:
16 (yx)′ = 0↔ y′x+ x′y = 0 and y′x+ x′y = 0↔ −xy2 + r + x2 = 0
17 (recall: r=0)
18 */
19 dI(1)
20 ,
21 /* y>0 case needs an extra cut; see note on differential ghosts. */
22 dG(z’= x

2z, z2y = 1, 1);
23 existsR({‘1‘}, 1);
24 dI(1)
25 )
26 ,
27 /* CASE 2: r < 0 */
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28 /* introduce new variable s = sqrt(-r) and prove s exists. */
29 cut(∃s.r = −s2); <(nil, hideR(1) ; QE);
30 /* Some cleanup work about s */
31 existsL(-2) ; existsR(−s, 1) ; implyR(1) ;
32 /* See note on differential ghosts. */
33 dG({y′ = (s− x)y}, y(x+ s) = 0 ∧ y > 0, 1) ; existsR({‘1‘}, 1) ;
34 boxAnd(1) ; andR(1); <(
35 dI(1),
36 dG({z′ = x−s

2z }, z2y = 1, 1) ; existsR({‘1‘}, 1) ; dI(1)
37 )
38 )

The main idea is that many results about dynamical systems which are not traditionally
thought of as reachability properties are none-the-less expressible using a combination of dL
and Bellerophon even though KeYmaera X is not explicitly designed to support general-purpose
mathematics. I.e., a combination of Bellerophon tactics and schematic dL formulas can express
general results about dynamical systems. This fact enables our proof-producing axiomatic ODE
solver without any direct appeal to Picard–Lindelöf. With a bit of ingenuity, KeYmaera X’s
approach toward hybrid systems analysis is surprisingly powerful.

3.2.2 Related Work on Formal Methods for Hybrid Dynamics

Trustworthy and productive hybrid systems theorem proving requires a small soundness-critical
core, automation specific to hybrid systems, and a mechanism for composing this automation.
Even though these ingredients can be found scattered across a multitude of theorem provers, their
combination provides a novel a tactical theorem proving technique for hybrid systems. Table 3.1
compares several tools along the dimensions that we identify as crucial to productive hybrid
systems verification (SC indicates a soundness-critical dependency on user-defined tactics or on
an external implementation of a more scalable arithmetic decision procedure).

Table 3.1: Comparison to related verification tools and provers
Tool Small Core HS Library HS Auto Scriptable External Tools
KeYmaera X Yes Yes Yes Yes SC
Hybrid Systems Tools2 No No Yes No SC
Theorem Provers3 Yes No No Yes No
dL in Isabelle,Coq[20] Yes Yes4 No5 Yes No
KeYmaera 3 No Yes Yes SC SC

2E.g., Ariadne[19], C2E2 [32], Charon [10], Checkmate [81], CORA [5], d/dt [14], sReach/dReach/dReal [44,
66, 101], FLOW* [23, 24], the MATLAB Hybrid Toolbox [16], HyReach [75], hyPro [56, 96], HyTech [8, 55],
PHAver [36], Kronos [26], Ptolemy [22, 34], S-Taliro [11], SpaceEx [38], UPPAAL [17, 18, 25, 70], and others.

3E.g., Coq [77], Isabelle [83], HOL [50, 97], and Lean [28, 29].
4via encodings in dL
5via KeYmaera X proof term extraction discussed in Section 3.1.1
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Logics of Hybrid Systems Theorem provers for hybrid dynamics use deduction in a formal
calculus to establish reachability properties about a programming languages model of hybrid
dynamics. Differential Dynamic Logic and Hybrid CSP [73] both fit this paradigm. The first
theorem prover for dL was KeYmaera6 [91]. KeYmaera was built as an extension to the KeY
system [3] and is compared to KeYmaera X in Table 3.1.

General-Purpose Theorem Proving Differential dynamic logic is a specialized logic for stat-
ing and proving reachability properties of hybrid dynamical systems. Several researchers have
proposed building a theory of hybrid systems within existing theorem provers. The most com-
plete approach is that of Bohrer et al. [20], whose work is compared with KeYmaera X in
Table 3.1. The approach of Bohrer et al. leverages purpose-built systems such as KeYmaera X
while building an interface with the larger theories available in tools like Coq and Isabelle.

Some libraries implemented within general-purpose theorem provers are relevant to the anal-
ysis of continuous systems. For example, Immler and Hölzl formalize Picard-Lindelöf in Isabelle
[57, 58]. Foster et al. [35] recently proposed a new approach toward verifying hybrid systems
using a Hoare logic implemented in Isabelle. Foster et al. focus on unifying theories and their
current exploration of interactive and automted hybrid systems verification focuses on demon-
strating that these properties are encodable within their framework.

Delta Decidability δ-decidability [43] introduces a relaxed notion of correctness for real arith-
metic decision procedures. The dReal [66] and dReach [44] tools leverage this new notion of
decidability to obtain verification results about hybrid systems.

Timed Automata Timed automata express a restricted subset of hybrid dynamics in which
continuous dynamics are restricted to a finite set of real-valued resettable clocks. This setting
does not allow expression of the rich continuous dynamics typically found in cyber-phyiscal
systems, but is more tractable. Tools such as UPAAL [17, 18, 25, 70] and [26] are able to
automatically model-check properties of (networks of) timed automata.

Hybrid Automata Hybrid automata [54] are a representation of hybrid dynamics based on
automata theory. Several approaches toward model checking for hybrid automata have been
proposed and implemented; all of these approaches attempt to compute a set of a states that are
reachable from an initial configuration. The reachable set is often over-approximated to make
automated analysis tractable. Over-representations might be represented as ellipsoids, convex
polytopes, zonotopes, and/or support functions. Many of these approaches consider subsets of
hybrid dynamics; e.g., PHAver [36] considers linear hybrid automata and SpaceEx [38] considers
piecewise affine dynamics. KeYmaera X currently provides less automation than these tools but
is also not restricted to a subclass of hybrid systems7. KeYmaera X also differs from these tools

6Not to be confused with KeYmaera X, a clean-slate implementation that shares no code with KeYmaera, im-
plements a different core calculus, and takes a different approach toward both interactive and automated theorem
proving.

7 This limitation is one of the implementation rather than the theory. Section 3.2.1 discusses how automation can
be built on top of KeYmaera X using a combination of schematic dL formulas and Bellerophon tactics.

16



July 23, 2018
DRAFT

because it provides a robust interactive theorem proving environment; see Fulton et al. [42]
Mitsch and Platzer [78].

Among tools based on hybrid automata, Ariadne[19] is notable because – like KeYmaera X–
Ariadne aspires to provide both an alaysis tool and a development environment for for construct-
ing new hybrid systems analyses. Unlike KeYmaera X, Ariadne does not isolate soundness-
critical reasoning from user-defined verification algorithms.

Conclusion

KeYmaera X is a novel hybrid systems theorem prover that provides: 1) a small foundational
core; 2) a library of high-level primitives automating common deductions (e.g., computing Lie
Derivatives, computing and proving solutions of ODEs, propagating quantities across dynam-
ics in which they do not change, automated application of invariant candidates, and conserva-
tion/symmetry arguments); and 3) scriptable heuristic search automation. KeYmaera X can also
automatically generate ODE invariants [92] and generate code via a verified toolchain [21].

17



July 23, 2018
DRAFT

18



July 23, 2018
DRAFT

Chapter 4

Verifiably Safe Reinforcement Learning

Autonomous vehicles should be deterministic, efficient, and safe. Chapter 3 introduced our ap-
proach toward for ensuring safety for nondeterministic controllers. Verified hybrid programs
distinguish between safe and unsafe actions in each state, but do not single out the specific action
that should be taken in order to achieve an objective other than safety. The car in Example 2 has
two different options in most of the state space, and can always choose to activate its brakes.
Although KeYmaera X tells us that this controller is safe, the resulting theorem does not explain
the sequence of actions that will help the car actually reach the stop sign.

KeYmaera X establishes a safe set of actions, but does not explain which of these actions
ought to be taken.

Fortunately, reinforcement learning solves exactly the problem that KeYmaera X does not
solve. Given an appropriate reward signal, a reinforcement learning algorithm could tell us which
sequence of actions should be taken so that the car reaches the stop sign without over-shooting
the stop sign. However, learning this control policy might require thousands of iterations before
the algorithm eventually learns how to avoid over-shooting the stop sign. This situation is un-
acceptable in the real world, where over-shooting a stop sign might result in property damage
or even loss of life. In addition, the exploration of obviously unsafe or unfeasible policies also
contributes to the notorious data-inefficiency of reinforcement learning algorithms.

In prior work [40], we suggested an approach that combines the best of both worlds. In
our approach, KeYmaera X constrains the search space for a reinforcement learning algorithm
so that only safe actions are taken, while reinforcement learning is free to search the subset
of safe policies for a policy that achieves objectives other than safety. Our approach, called
justified speculative control (JSC), ensures that verification results transfer to policies learned
via reinforcement learning. This approach has the nice auxiliary advantage of increasing the
data efficiency of reinforcement learning, because obviously unsafe actions do not need to be
explored during reinforcement learning.

KeYmaera X, like all formal methods tools, can only provide guarantees relative to a model
of the world. When the model is inaccurate, guarantees disappear. For example, if the stop sign
in Example 2 begins to move forward1, then the car has left the modeled portion of the state space
and might over-shoot the stop sign even though its controller is verified. We call the set of states

1E.g., consider a situation in which the stop sign is held by a partially occluded construction worker along a work
zone and the construction worker begins to walk forward.
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where the model is accurate the model space; traditional verification results only apply within
their model space.

Designing a safe autonomous system requires either building a perfect model of the world,
or else ensuring that the system will behave well outside of model space.

This section explains how justified speculative control guarantees safety within model space,
discusses one approach toward controlling well outside of model space, and discusses other
approaches toward safe and verifiable reinforcement learning. The work presented in this chapter
was previously published by Fulton and Platzer [40]. We also discuss the limitations of this
approach; those limitations will motivate the proposed work discussed in Chapter 5.

4.1 Justified Speculative Control
Justified speculative control ensures safety within model space and suggests one approach toward
leveraging verification conditions to control well outside of model space. The algorithm takes as
input a dL formula with the form

` init→ [{ctrl;plant}∗]safe

where
ctrl ≡ ?guard0;act0 ∪ · · · ∪ ?guardn;actn2

From this model, JSC uses the Bellerophon ModelPlex tactic to generate a controller monitor
and model monitor. The controller monitor specifies, for each state, which actions are permitted
by the guards. The model monitor specifies, for each (spre, a, spost) tuple, whether taking the
action a in state spre and then following the flow of the differential equations could lead to state
spost.

Justified Speculative Learning
1 JSCGeneric(init, (S,A,R,E), choose, update, done, CM, MM) {
2 prev := curr := init;
3 a0 := NOP;
4 while (!done(curr)) {
5 if (MM(prev, a0, curr))
6 u := choose({a ∈ A | CM(a,curr)});
7 else
8 u := choose(A);
9 prev := curr;

10 curr := E(u, prev);
11 update(prev, u, curr);
12 }
13 }

JSC uses model monitors to constrain the learning process so that the reinforcement learning
algorithm only takes safe actions while in model space. Listing 4.1 provides pseudo-code for the
basic algorithm. Within model space, JSC acts like a sandbox; each acti discrete state update

2the guard conditions are optional; i.e., some actions can be unguarded.
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in the model is an action in an underlying Markov Decision Process and each guardi specifies
the states in which this action should be available to the optimization procedure.

Justified speculative control also considers situations where the system exits model space.
When the system leaves model space, JSC may speculate by choosing actions that are not allowed
in model space. However, during speculation, the system uses a real-valued variant of the model
monitor in order to speculatively guide the system back into modeled state space. When exiting
model space, justified speculative control allows possibly unsafe actions but abandons all goals
other than getting back to model space.

This approach toward controlling outside of model space works well for intermittent devia-
tions, such as a stop sign that moves forward a little bit once and then maintains its new position.
However, this approach comes with no guarantees – it is simply a heuristic, albeit one based on
a verification result, for controlling well in unmodeled space. These limitations are discussed at
greater length in Section 4.3.

Advantages of Justified Speculative Control Leveraging an existing model and control pol-
icy substantially increases the data efficiency of JSC relative to naı̈ve learning. Unlike traditional
verification approaches, JSC explains how to optimize for goals that are not safety-crtiical. Ver-
ification results transfer not only to final policies, but also to the learning process itself. This
might enable the use of online reinforcement learning in production environments. This com-
bination on improved data efficiency and safety guarantees for the training process itself might
enable the use of reinforcement learning in real, non-simulated environments.

4.2 Related Work on Safe and Verifiable Reinforcement Learn-
ing

Obtaining verification results for Artificial Intelligence is an emerging area of interest [95], but
there is a rich history of research on safe control in the absence of perfect models.

There are a myriad of approaches toward safe reinforcement learning that do not take ad-
vantage of formal verification, many of which are summarized by Garcı́a and Fernández [45].
Garcı́a and Fernández decompose these approaches into two broad categories: modification of
the optimality criterion, and modification of the exploration process. In this section, we compare
our approach to these approaches, following Garcı́a and Fernández’s taxonomy [45]. We also
include discussion of new related work that postdates the Garcı́a and Fernández survey.

Our work makes two contributions relative to this prior work. First, we leverage hybrid sys-
tems verification results and runtime monitor synthesis to appropriately sandbox the exploration
process, instead of relying on more ad-hoc sources of knowledge about how to act safely. The
chain of evidence transfers from a high-level model to runtime monitors and ultimately to the
reinforcement learning process via the theorems presented in this paper. Second, we distinguish
between optimizing among known safe policy options and speculating about portions of the state
space that are not a priori modeled. This distinction is crucial to determine what level of specu-
lation should be allowed, and when.

When compared to existing approaches to reinforcement learning, our approach either 1)
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suggests a way to strengthen the existing approach by incorporating not just a known-safe policy
but a formally verified safe policy; or 2) is possibly compositional with the existing approach
(by further modifying our exploration process to perform more robust decision making when the
model monitor is already violated).

Constrained Criterion

Safety properties can be thought of as constraints on an optimization process. Many researchers
have suggested various ways of characterizing these constraints and for optimizing in the pres-
ence of constraints.

Several approaches of this variety directly constrain the policy search space by only allow-
ing agents to choose from a set of control actions that are conjectured3 to be safe [47, 62, 80].
Altman’s Constrained Markov Decision Processes provide a theoretical framework for charac-
terizing constrained optimization of dynamical systems [6]. Recent work by Achiam et al. [2]
leverages this framework to constrain learning for high-dimensional control problems. Held et
al. [53] characterize safety in terms of thresholds on damage. Another approach toward safe re-
inforcement learning adopts worst case criterion [52] or risk-sensitive criterion [82, 99], in which
the optimization criterion is modified to reflect safety concerns.

Comparison with JSC and Proposed Work Each of these approaches assumes a tractable
characterization of safety constraints, such as a cost function or a characterization of forbid-
den regions. Constraints on cyber-physical systems are often fundamentally dynamical. For
example, safety constraints for collision avoidance algorithms must reference the dynamics of
interlocutors.

Constrained criterion approaches require the system designer to explicitly state safety con-
straints, usually as purely arithmetic properties that do not mention e.g., differential equations
or discrete dynamics. However, the problem of coming up with good constraints is analogous
to the problem of coming up with good reward functions. Although it is often easy to state the
dynamical systems interpretation of a constraint (e.g., the robot does not run into the interlocutor
whose movement is governed by given ODEs), translating these dynamical descriptions into a
arithmetic descriptions that are useful as costs or constraints for an optimization algorithm is
non-trivial and error prone. The problem of reducing reachability properties about dynamical
systems to unquantified real arithemtic constraints is ultimately reducible to the problem of full-
blown hybrid systems theorem proving4; in fact, this is exactly the methodolgy that KeYmaera X
takes toward verification.

Unlike both JSC and our proposed approach, none of this work suggests what should be
done when it becomes clear that the constraints originated from faulty assumptions about the dy-
namics of the system. Our proposed approach links a hybrid dynamical system to each runtime
constraint. We propose introducing explicit model updates that separate the assumptive compo-
nents of a hybrid system from the prescriptive models of a hybrid system. This allows us update
model specifications in a way that captures and corrects for incorrect assumptions and then syn-

3but not formally proven
4which is undecidable
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thesize new monitoring conditions that incorporate these updated assumptions. Our proposed
approach is also backed by formal proofs.

KeYmaera X and ModelPlex are able to automatically and correctly reduce reachability prop-
erties of hybrid dynamical systems to formulas of real arithmetic. Relative to these constrained
criterion approaches, we introduce a methodology – based on hybrid systems theorem proving
– for correctly and often automatically generating useful optimizing constraints from statements
about reachability properties of hybrid dynamical systems.

Initial Knowledge Approaches

Another approach toward safe learning attempts to initialize the learner in order to direct policy
exploration away from unsafe states [31]. Our approach is analogous; the guards on control
decisions in our hybrid programs are a form of initial knowledge. Unlike most approaches that
leverage initial knowledge, we explicitly characterize the difference between states where our
initial knowledge is trustworthy from states where our initial knowledge is not trustworthy.

Analysis of Learned Policies

Constrained criterion and initial knowledge approaches ensure safety by modifying the learn-
ing/optimization process. An alternative approach toward safe reinforcement learning suggests
analyzing the policies that are constructed from a learning process. For example, Katz et al. in-
troduce an SMT solver for analyzing deep neural networks and apply this technique to analysis
of a DNN implementation of collision avoidance for aircraft [64]. Wang et al. take a similar
approach toward reasoning about security properties [102].

Analyzing learned models is attractive when the modifying the learning process is intractable
or impossible, which is often the case in practical settings where a cutting-edge algorithm is not
trivial to modify with a constrained criterion, or especially when safety analysis is treated as a
post-hoc concern.

Although recent successes demonstrate the feasibility of analyzing very large learned poli-
cies, the curse of dimensionality tells use that these approaches will always require clever op-
timization. Our current and proposed approaches leverage the insight that safety problems are
often of lower dimension than optimization problems. Furthermore, unlike our approach, ana-
lyzing learned policies does not provide guarantees about the learning process itself.

Verified Perception

Some recent results focus on obtaining formal guarantees about neural networks used for per-
ception. Examples include the predictor/verifier framework of Dvijotham et al. [33] and VeriVis
by Pei et al. [85]. Our work focuses on control, not perception; however, finding ways to unify
work on safe perception with work on safe control is a promising direction for future research
agendas.
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Formal Methods for Linear Temporal Logic

Alshiekh et al. and Hasanbeig et al. each propose an approach toward logically constraining re-
inforcement learning based on Linear Temporal Logic (LTL) [4, 51]. Like JSC, these approaches
have a logical foundation. Unlike JSC, these approaches do not use a logic capable of expressing
hybrid dynamical systems and do not explain what to do when a model deviation is detected.
Therefore, these approaches do not solve the problem this thesis proposes addressing: provid-
ing verifiably safety guarantees for cyber-physical systems when reality deviates from modeling
assumptions.

The use of LTL limits the applicability of these approaches in cyber-physical systems, but
does succinctly capture many constraints on discrete or discretized planning and optimization
problems. One fruitful avenue of future work could combine these approaches with JSC, using
LTL-based approaches for expressing constraints on global, coarse-grained planning while using
dL for expressing constraints on more local, fine-grained control decisions.

4.3 Limitations of Justified Speculative Control
The justified speculative control algorithm discussed in this chapter presents one approach to-
ward verifiably safe learning. Reinforcement learning is sandboxed by monitors derived from
verification results, and a quantitative version of the monitor provides a signal that appears to
give reasonable heuristics in unmodeled environments. However, this approach has two signifi-
cant limitations.

Limited Applicability Justified speculative control is currently limited to simple hybrid sys-
tems with few state variables and linear continuous dynamics. There are two reasons for this
limitation. First, the ModelPlex tactic can only generate exact monitoring conditions when the
differential equations have a solution that exists in the first order theory of real closed fields5.
Second, justified speculative control assumes it is possible to enumerate the entire state space
during the training phase. These two limitations are crippling: JSC is not applicable to hybrid
systems with nonlinear continuous dynamics and does not work well for models with large state
spaces. Because of these limitations, the justified speculative control algorithm introduced by
Fulton et al. [40] is only validated on very simple models.

Lack of Guarantees for Unmodeled Environments Ideally, an approach toward verified safe
autonomy should come with guarantees of safety and/or optimality even in cases where the orig-
inal model is slightly wrong. Small deviations from the model should not typically lead to
catastrophic failures.

Overcoming these limitations requires two new contributions. First, we must expand justified
speculative control to large and/or continuous state and action spaces. Second, we must find a
way to identify and resolve systematic disparities between models and reality. And when a more
accurate model is discovered, this new model must be incorporated into justified speculative
control.

5in particular, these solutions may not contain any exponential or trigonometric functions

24



July 23, 2018
DRAFT

Chapter 5

Future Work and Proposed Contributions

Justified speculative control takes a first step toward verifiably safe learning by transferring safety
guarantees to learned controllers within model space and by leveraging insights from verification
during exploration outside of model space. The proposed work will address the two limitations
of JSC discussed in Section 4.3 by introducing verification-preserving model updates and lever-
aging these updates during the learning process.

We propose developing a set of hybrid systems model updates that capture common ways
in which reality might deviate from modeling assumptions. For example, recall the situation
where an ostensibly static obstacle (such as the stop sign in Example 2) begins moving toward
the system under control1.

Ideally, the robot should update its model of the world by introducing a new set of differen-
tial equations that describe how the ostensibly static obstalce is moving. The robot should then
update its controller so that the existing safety constraint is preserved whenever possible. This
pair of updates should be coupled so that systematic changes to the robot’s model of the envi-
ronment correspond with changes to the robot’s control logic. Ideally, the pair of updates should
also come with a formal correctness proof: if the original system avoided the obstacle, and the
obstacle dynamics changed in a given way, then the controller should be changed in such a way
that the original safety constraints are preserved.

The proposed work will realize this vision by introducing a set of model updates, inventing
a combination of offline and online verification for ensuring that model updates preserve ver-
ification results, associating model identification algorithms with each of these verified model
updates, and explaining how to obtain safety results in the presence of model deviations by in-
corporating model identification algorithms into justified speculative learning.

The remainder of this proposal is organized as follows.
Section 5.1 introduces the conceptual foundations of verifcation-preserving model updates.

Section 5.1.1 demonstrates the proposed interaction between offline verification, online verifica-
tion, model identification, and reinforcement learning in a concrete example.

Section 5.1.2 discusses other possible updates.

Section 5.1.3 discusses two possible case studies for validating this approach.

1e.g., a stop sign held by a partially occluded construction worker
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Section 5.2 introduces more related work and places our proposed work in context. Section 5.3
succinctly summarizes all three of our related work discussions.

5.1 Verification-Preserving Model Updates
Engineers often modify models in response to new data. For example, an engineer might modify
a hybrid system {ctrl;x′ = v} by adding a constant additive term {ctrl;x′ = v + n} or
a constant multiplicative factor {ctrl;x′ = nv}. In most cases, making this change to the
environmental model will necessitate a corresponding change to the controller ctrl.

In some cases, such as the addition of constant additive or multiplicative terms, our engineer
might also introduce some new assumptions about the bounds on the parameter n. In these cases,
both the hybrid program and the dL safety specification will change. For example, the engineer
might change

init→ [ctrl;x′ = v]safe

by adding a new assumption that the parameter n is strictly positive:

init ∧ n > 0→ [ctrl;x′ = nv]safe

These are examples of model updates. This thesis will consider the problem of automatically
generating model updates during reinforcement learning. The thesis will consider the canonical
form

init→ [{ctrl; plant}∗]safe
where the formulas init and safe do not contain modalities or quantifiers, ctrl is a loop-free
discrete program, and plant is a system of ordinary differential equations (possibly nonlinear).
A model update is a systematic modification to each part of the model

init1  init2

ctrl1  ctrl2

plant1  plant2

safe1  safe2

such that if ` init1 → [{ctrl1;plant1}∗]safe1 then ` init2 → [{ctrl2;plant2}∗]safe2

as well.
Example 4 Consider the valid formula

` x > 0→ [v := ∗; ?v > 0;x′ = v]x > 0

The following hybrid program mutation adds a multiplicative term to the ODE (with no modifi-
cations to other parts of the model):

x′ = v  x′ = nv

This model mutation is not verification-preserving because

6` x > 0→ [v := ∗; ?v > 0;x′ = nv]x > 0
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However, several extended model mutations are verification-preserving. For example, we can
place bounds on the parameter n in the initial conditions

x′ = v  x′ = nv

x > 0 x > 0 ∧ n > 0

resulting in a valid formula

` x > 0 ∧ n > 0→ [v := ∗; ?v > 0;x′ = nv]x > 0

We could also modify the controller to insert a test that asserts n > 0 before following the flow
of the differential equation:

x′ = v  x′ = nv

v := ∗; ?v > 0 v := ∗; ?v > 0; ?n > 0

resulting in a valid formula

` x > 0→ [v := ∗; ?v > 0; ?n > 0;x′ = nv]x > 0

Defining Model Updates In general, we define model updates as modifications to dL formulas
with the form:

init→ [{{ctrl 0 ∪ ctrl 1 ∪ · · · ∪ ctrl n};plant}∗]safe

We sometimes also allow the insertion of a timer

init→ [{{ctrl 0 ∪ ctrl 1 ∪ · · · ∪ ctrl n}; c := 0;plant,c’=1 & P}∗]safe

and/or the insertion of non-alternating interleavings of discrete and continuous dynamics:

init→ [{ctrl ∪ plant}∗]safe

The first new contribution in this thesis is a set of model updates and corresponding Bellerophon
programs that translate safety proofs for the original model into safety proofs for the new model.
These model updates will capture common ways which which models might change in response
to observed data (e.g., a presumably stationary object might move, requiring use to update our
model of the object and the collision avoidance protocols relevant to that object). The result-
ing set of model updates will enable us to address the core limitations of JSC identified in this
chapter.

5.1.1 Obstacle Updates: An Example
Perhaps the most pervasive safety constraint is collision avoidance. One approach toward colli-
sion avoidance is maximally pessimistic, assuming that all obstacles are capable of quick accel-
eration and high speed in any direction. This assumption will ensure safety, but is impractical
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because the system will make no progress. Thus, practical collision avoidance involves a difficult
tradeoff between staying conservative enough for safety, but optimistic enough to make progress
toward a goal.

This section demonstrates how we plan to use model updates for verifiably safe learning out-
side of model space. We introduce a set of verification-preserving model updates that correspond
to a set of obstacle models. We then discuss how a combination of offline and online learning
can be used to instantiate these models at runtime based upon sensor data using a model iden-
tification algorithm. Finally, we incorporate this approach into the JSC algorithm. The result
is an approach toward switching between obstacle models based upon sensor data in a way that
ensures collision avoidance as long as we identify the correct model.

The Initial Model We recall the car, moving in a straight line, that must stop before arriving
at an obstacle in the road. This property is expressible in dL by the formula

Listing 5.1: The Linear Car Program
1 A>0 ∧ B>0 ∧ T>0 ∧ obsPos-pos > minBrakingDistance(vel) →
2 [{
3 {
4 accel := -B;
5 ∪
6 ?safe(pos, vel, accel, obsPos);
7 accel := A;
8 }
9 c := 0;

10 { pos’ = vel, vel’ = accel & vel <= 0 & c <= T }
11 }*@invariant(obsPos - pos > minBrakingDistance(vel))]pos < obsPos

where obsPos is the location of the obstacle, T is an upper bound on the amount of time that
passes between executions of the controller, and the functions are defined as follows:

Listing 5.2: Function Definitions for the Linear Car Program
1 /*Minimum distance required to brake if traveling with velocity vel.*/

2 R minBrakingDistance(R vel) = vel2

2B .
3 /* new velocity after n time units when accelerating with accel from

current velocity vel. */
4 R newVel(R vel, R n, R accel) = vel+ n · accel.
5 /* The distance the car travels with initial velocity vel and constant

acceleration accel. */

6 R travelDistance(R vel, R accel) = T2accel
2 + T · vel.

7 /* Predicate defining when it’s safe to accelerate with accel. */
8 B safe(R pos, R vel, R accel, R obsPos) <-> (
9 obsPos - (pos + travelDistance(vel, accel)) >

10 minBrakingDistance(newVel(vel,T,accel))
11 ).

The automatic tactic master implemented in KeYmaera X proves this property automatically
using the loop invariant annotation.
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Obstacle Model Updates

We introduce two obstacle model updates. The first allows the obstacle to move according to
a set of differential equations and the second allows the obstacle to appear and disappear as a
discrete event.

The Moving Obstacle The first update introduces some simple obstacle dynamics that allow
the car to move forward2:

init initconst
∧ obsPos-pos > minBrakingDistance(vel - obsVel)

∧ obsVel ≥ 0

safe(· · ·) (obsPos + travelDistance(obsVel, 0))

-(pos + travelDistance(vel, accel))

> minBrakingDistance(newVel(vel,T,accel))

plant & domain plant,obsPos′ = obsVel & domain

Notice that the controller is updated by changing the definition of the safe predicate, expanding
the set of states where it is safe to accelerate. The corresponding proof update relaxes the loop
invariant used by master:

loopInvariant obsPos - pos > minBrakingDistance(vel - obsVel)

This model update is pre-computed at design time and can be applied automatically for cer-
tain classes of models. Like many tactics, a full definition of the applicability of this update is
non-trivial and best described by the concrete implementation3.

The Jumping Obstacle We also consider the case where an obstacle occasionally disppears,
only to reappear further up the road:

ctrl ctrl;jmp := (−∞, 0];obsPos := obsPos + jmp

where ctrl stands in for Lines 6–8 of the original model.
The rest of the model and the proof remain the same. This model update is pre-computed at

design time and can be applied automatically for certain classes of models4.

Identifying the Correct Model

Differentiating between an arbitrary discrete jump and smooth change in location requires mul-
tiple obsevations. We treat model identification as a simple classification task that observes a
sequence of sensor readings and determines which model provides the most accurate explana-
tion for the observed dynamics. We also allow for the possibility that no model provides a good
explanation.

2The definitions used in this listing are presenting in Listing 5.2.
3For details, see edu.cmu.cs.ls.keymaerax.vpmu.Static2Linear in the KeYmaera X source code.
4See edu.cmu.cs.ls.keymaerax.vpmu.Static2Jump for details.
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Incorporating Obstacle Model Updates into JSC

Incorporating these model updates into JSC requires computing each model update and its asso-
ciated ModelPlex monitors offline. JSC is then augmented with a model identification algorithm
and chooses its sandboxing constraint based upon the currently accepted model. Whenever the
model identification algorithm does not identify an acceptable model, JSC attempts to abort by
braking to a full stop.

5.1.2 Other Proposed Model Updates

The proposed thesis will extend the example in Section 5.1.1 to consider nonlinear dynamics
and continuous action spaces, with corresponding updates to the JSC algorithm. In addition to
extending our exploration of model updates for obstacle avoidance, we will also discuss several
other model updates. Examples include updates to the system’s own dynamics (e.g., introduction
of bounded noise and disturbance in state variables during actuation), updates to the system’s
control logic (e.g., parameter insertion, parameter instantiation, refinement of Taylor expansions
used to estimate the position of obstacles in the environment), updates to other agents in the
system (e.g., obstacle updates), and/or updates to portions of the environment without agency
(e.g., unannounced lane closures in lane keeping).

For each update, we will introduce an appropriate model identification algorithm for decid-
ing when to use the update and incorporate the update procedure into a reinforcement learning
algorithm. Some of these updates (e.g., parameter insertion and instantiation) will require a
light-weight theorem prover capable of applying uniform substitutions, instantiating quantifiers,
and performing simple propositional proof steps at runtime. Through a combination of offline
verification of model updates and online validation of concrete instantiations of these updates,
we will maintain a chain evidence that allows composition of schematic updates at runtime.

5.1.3 Evaluation

We propose evaluating the model update approach on two sets of environments: one motivated
by autonomous vehicles and the other motivated by a safety-critical wearable device. We have
chosen these two environments because of the prevalence of modeling uncertainty in these do-
mains.

Collision Avoidance for an Autonomous Car We propose developing a set of model updates
for the kinematic model of an autonomous vehicle similar to the model described by Paden et
al. in [84]. We will consider a multi-modal tracked environment in which the perception layer
might change its judgement about whether an obstacle is static, a pedestrian, or another vehicle.
We will also investigate control techniques that satisfy safety constraints for multiple obstacle
models simultaneously. This work will require developing a lightweight online verifier capable
of performing uniform substitutions and quantifier instantiations at runtime. The collision avoid-
ance case study will evaluate the effectiveness of model updates at capturing uncertainty about
other actors in an environment.
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SCUBA Ascent Environment We further propose a second case study that will evaluate the
effectiveness of model updates at capturing uncertainty and changes to the actuated system. This
case study will consider the problem of advising a SCUBA diver how to ascend from depth with-
out running out of oxygen and without risking decompression sickness. In previous work with
Bajaj and Elmaaroufi, we have developed and verified a model of a SCUBA ascent protocol5.
This model is an interesting case study for model updates because the system contains several
parameters that are difficult or impossible to instantiate at design time. Therefore, parameter
insert and instantiation updates are key components of an effective control algorithm based on
model updates.

Summary We suggest developing a set of model updates that are capable of expressing model
deviations in at least two realistic hybrid systems models. We further propose developing a
framework that blends offline verification, online verification, model identification, and rein-
forcement learning to enforce dynamic safety constraints in dynamic environments while still
allowing the system to optimize for other, non-safety-critical constraints. Achieving this goal
will require:
• identifying a set of verification-preserving model updates (verification preservation may

be assured by offline verification, online (i.e., lightweight runtime) verification, or some
combination thereof);

• extending the JSC algorithm to support continuous state and action spaces; and
• incorporating model update identification algorithms into JSC.

Through these contributions, we will show that autonomous cyber-physical systems that use
reinforcement learning for control are amenable to formal verification, even outside from an
initial model space.

5.2 Related Work on System Identification and Program Re-
pair

Automatically modifying or constructing programs based upon logical specifications, test data,
and/or environmental data is a common approach used by researchers in many different disci-
plines. This section reviews approaches from the control theory, software engineering, AI/ML,
and programming languages research communities.

Summary of Comparisons Unlike existing work, the verification-preserving model updates
discussed in Section 5.1 learn how to modify a continuous system in response to data, discover a
corresponding update to a discrete system that preserves a hybrid reachability property, and then
synthesize a formal and computer-checked proof that the resulting combination of discrete/con-
tinuous model updates continue to satisfy relevant safety invariants.

5https://github.com/nrfulton/scuba-release
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Model and System Identification

System identification algorithms use data to build a discrete, continuous, or even hybrid dynam-
ical systems model of the observed process. System identification is an enormous and mature
area of research. Diester provides a historical overview of system identification [30]. Garg et al.
survey approaches toward system identification for control that decomposes techniques across
several different dimensions [46]. Juloski et al. survey and compare approaches toward system
identification for certain classes of hybrid systems [61].

Each of the model updates proposed in Section 5.1.1 will associate with each model update
one or more model identification algorithms for determining whether the update is appropriate.
For example, the parameter instantiation update discussed in Section 5.1.2 will be used in both
of the case studies discussed in Section 5.1.3 and will use system identification techniques to
determine when the update is appropriate and how it should be applied.

In general, each VPMU can be viewed as a particular subclass of system identification prob-
lems for discrete, continuous, or hybrid systems. When viewed from a system identification
perspective, this thesis proposes contributing:

1. an approach toward preserving reachability properties while applying system verification
techniques (or at least recognizing when the identified system no longer satisfies a desired
invariant), and

2. a technique for combining system identification procedures for different subclasses of sys-
tems.

Program Synthesis and Repair

Program synthesis algorithms attempt to automatically generate programs in a fixed program-
ming language. The basis for synthesis might be a formal specification, a test suite, or a set of
I/O pairs. Automatic program repair algorithms are a special class of synthesis algorithms that at-
tempt to synthesize bug-fixing patches for existing programs. Approaches toward program repair
differ on the basis of the programming language under consideration, the domain of relevance,
the method for producing patch candidates, and the basis for accepting or rejecting a repair.

GenProg by Le Goues et al. [72] uses genetic programming to generate repairs for C pro-
grams using test cases as the primary definition of correctness. Rothenberg and Grumberg [93]
leverage SAT and SMT solvers to generate repairs using logical assertions as a basis for correct-
ness. Le et al. [71] leverage a combination of deductive verification and genetic programming to
generate repairs.

Our proposed approach leverages data-driven approaches to decide how environmental mod-
els should change. Especially for autonomous systems, program repairs based upon designer
intent are irrelevant to the choice of an accurate environmental model – the world wants what
it wants. However, once a repair to the environmental model is identified, we leverage logic-
driven approaches to decide how a controller should change in response to identified changes in
environmental models. This combination that allows us to adapt to unforeseen environmental
behaviors without sacrificing reachability proofs or losing track of designer intent.

When viewed from the perspective of program synthesis and repair, the proposed work
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1. contributes the first library of mutations for continuous programs (ODEs) and hybrid pro-
grams,

2. demonstrates how to combine data-oriented mutations for environmental models with log-
ically constrained mutations for controller models in a way that preserves reachability
properties for the combined hybrid dynamical system, and

3. shows how program repairs provide a setting for characterizing situations in which learning
algorithms are capable of operating safely.

Programming Language Representations in Reinforcement Learning

Recent work leverages programming language theory as part of a reinforcement learning al-
gorithm. For example, Verma et al. use a simple functional programming language to ensure
intrepretability of learned policies [100]. Our work has a similar goal, but focuses on a language
with a rich combination of discrete and continuous dynamics. Like other related work on us-
ing LTL specifications to constrain reinforcement learning, this work might compose well with
our current and proposed work by providing an attractive setting for planning problems while
dL-based approaches provide an attractive setting for problems where interpretability is funda-
mentally limited by the lack of differential equations in the policy language (i.e., most controls
problems).

Ghosh et al. [48] propose an approach toward constrained optimization that monitors for
safety violations using a specification monitor and uses a grammatical approach toward bounding
model deviation. Unlike the proposed work, Ghosh et al. do not consider the case where the
grammar can express not just arithmetic constraints but entire hybrid dynamical systems and
also do not consider the problem of preserving formal proofs.

Other Related Work on Hybrid Systems

We propose a data-driven approach toward safe control, mediated by model identification al-
gorithms specialized to preserve verification results. Many other data-driven approaches to-
ward hybrid systems control are suggested in the literature; for example, Kushner et al. take a
data-driven approach toward control for an artificial pancreas [68] and Althoff et al. suggest a
demonstration-driven approach [49]. Kumar et al. introduce an approach toward learning based
upon Hamiltonian control [67] inspired by earlier work by Nerode and Kohn [65].

Our proposed approach uses (online mutations of) specifications to monitor cyber-physical
systems. Our monitors are generated by KeYmaera X using Modelplex; Bartocci et al. review
various other approaches toward monitoring CPS [15]. Some of our proposed model updates
make use of both offline and online verification; Johnson et al. suggest other approaches toward
the online component of this verification effort [60]. Some (but not all) of our proposed model
updates are refinements of hybrid programs; we could show these are verification-preserving
using Loos’ differential refinement logic [74].
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5.3 Summary of All Related Work
The proposed thesis leverages several research areas: hybrid systems verification (HSV), reinforcement learning/optimal control
(RL/OC) constrained reinforcement learning (CRL), model/system identification (MI/SI), and program synthesis/repair (PS&R).
Table 5.1 summarizes all of these research areas as they relate to our previous and proposed work. The Safe columns indicate whether
the technique guarantees safety in model space (∈MS) and outside of model space ( 6∈MS); for techniques that have multiple phases
(e.g., reinforcement learning), safety is taken to mean safety throughout system execution. The HS column indicates whether the
family of techniques is applicable to hybrid systems. The “Changes Model” column indicates whether the family of techniques
will produce a human-readable model explaining why the system behaved as it did (either inside or outside of model space). The
“Explainable” column indicates whether the approach offers some other method for ensuring that safety guarantees are explainable
to system designers and other stakeholders.

Table 5.1: Summary of All Related Work.
Approach Safe ∈MS Safe 6∈MS HS Changes Model Explainable
JSC+VPMU6 Formal Formal Yes Yes Yes
JSC[40] Formal Informal Yes No Yes
Software Verification Formal No No No Yes
HS Verification7 Formal No Yes No Yes
PS&R w/ formal specs8 Some Some No Yes (not HS) Yes
PS&R w/ test cases No No No Yes (not HS) Yes
MI/SI9 Some (not formal) Some (not formal) Some Some Some
RL/OC10 No No Some No Some
Constrained RL/OC Informal No Some No Some
LTL FM for RL[4, 51] Formal No No No Yes
MC for NNs (e.g., [64, 102]) Formal No Some No Yes

6Proposed.
7A more in-depth comparison of software and hybrid systems verification techniques is presented in Table 3.1.
8Section 5.2 compares JSC+VPMU to program synthesis and repair techniques in more detail.
9Section 5.2 discusses the relationship between JSC+VPMU and model/system identification in more detail.

10Section 4.2 discusses the relationship between JSC and (constrained) learning/optimization in more detail.
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5.4 Timeline
My thesis proposal will be scheduled over the summer. The remainder of my thesis work will be
scheduled as follows:
• A paper evaluating this approach on several sets of model updates and their associated

environments will be submitted to AAAI 2019 on September 1.
• A paper establishing safety and convergence guarantees for JSC with Model Updates in a

generic setting will be submitted to TACAS in September.
• The final thesis document will be prepared concurrently to the preparation of these sub-

missions, and a final defense will occur in Fall 2018.

5.5 Conclusion and Future Work
The future of mobility is autonomous, so we must figure out today how to design autonomous
systems that are demonstrably safe. Traditional approaches toward hybrid systems verification
assume a single, sufficiently accurate model and ignore non-safety constraints. The proposed
thesis will move beyond this assumption without abandoning the manifold advantages provided
by model-based approaches toward engineering autonomous systems.

System designers who use this methodology will be able to encode the many ways in which
the world might be different from nominal expectations. By making explicit the model corre-
sponding to a control policy and coupling changes in the policy with changes to the underlying
continuous dynamics, we ensure that systems will at least attempt to adapt instead of obliviously
continuing even after detecting demonstrably false assumptions. And instead of blinding chang-
ing the control policy in ways that might cause catastrophic failures, we will preserve a powerful
extension to the usual verificationist guarantee: if the system is able to find an accurate model of
the system, then the system will control safely.

In future work, we will continue to develop new verification-preserving hybrid systems model
updates and continue to improve the heuristics used to select model updates. This work will be
enabled, in part, by continued improvements in hybrid systems theorem provers and reinforce-
ment learning algorithms.
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Méry, editors, Proceedings of the Third Workshop on Formal Integrated Development
Environment, F-IDE@FM 2016, Limassol, Cyprus, November 8, 2016., volume 240 of
EPTCS, pages 67–81, 2016. doi: 10.4204/EPTCS.240.5. URL https://doi.org/
10.4204/EPTCS.240.5. 3.2.2
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