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Abstract. Tokamak fusion reactors generate energy by using a mag-
netic control system to confine hot plasma in a toroidal chamber. In large
reactors, incorrect implementation of plasma stabilization algorithms can
result in significant physical damage to the reactor. This paper explains
how a combination of formal verification and numerical simulation can
be used to analyze the safety of a vertical stabilization algorithm of a
tokamak fusion reactor.

1 Introduction

Fusion reactors generate energy by capturing energy released when two atomic
nuclei fuse together [1]. Fusion of atomic nuclei occurs when the nuclear force
pulling the nuclei together exceeds the electrostatic force pushing them apart.
Because the nuclear force only exceeds the electrostatic force over very short
distances, fusion reactors must first strip away the electron clouds surrounding
the nuclei. This is achieved by heating the fuel atoms to extremely high temper-
atures, resulting in a super hot and electrically charged ion cloud. To generate
net positive energy, fusion reactors must first generate a plasma and then con-
fine the plasma inside a reaction chamber. Confining the plasma requires careful
control of its position, shape, and movement.

Tokamak reactors achieve this control objective by exploiting the charged
nature of the plasma column. The charged plasma field is enclosed in a toroidal
chamber, and magnetic coils are wrapped around the exterior of the chamber
[8]. The plasma column in tokamak reactors is typically elongated vertically to
increase fusion efficiency, but this results in a destabilizing force on the plasma.
Vertical stabilization algorithms ensure that the plasma does not touch the top
or bottom of the reaction chamber by controlling the vertical position of the
elongated plasma. Vertical stabilization is one of the simplest but most important
control problems in tokamak reactors.

The push for fusion reactors that produce more energy than they consume
motivates the ongoing construction of very large tokamak reactors [39]. As toka-
mak reactors grow larger, safety interlocks for magnetic control algorithms be-
come more important. Large reactors are extremely expensive, and improperly
controlled plasma could permanently damage the reactor. Therefore, deploying
an experimental control algorithm on a very large reactor requires extensive pre-
validation. This need for extensive pre-validation slows down the deployment of
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Fig. 1. A diagram of a Tokamak reactor with key features of the magnetic control
system labeled, rendered by SolidWorks and based on a similar diagram in [8].

novel control algorithms, and poses a significant challenge when considering the
use of control algorithms with black box machine learning components.

This paper considers the possibility of constructing software safety interlocks
for the magnetic control systems of tokamak reactors. To illustrate the role
the formal verification could play in supporting fusion research, we show how
a hybrid systems theorem prover can be used to verify a vertical stabilization
algorithm for an existing tokamak device. Because we are interested in enabling
safe experimentation (e.g., via parameter tuning), we decompose the verification
procedure into two phases: a first phase that reduces a parametric hybrid systems
model to a non-parametric model, and a second phase in which a numerical ODE
solver is used to check individual parameter choices for correctness.

The rest of this paper is organized as follows. Section 2 explains how tokamak
fusion reactors work, precisely characterizes the vertical stabilization problem,
and introduces the logic we use to specify and verify the vertical stabilization
algorithm. Section 3 describes the T-15 vertical stabilization control algorithm
that we verify. Section 4 presents our formalization of an established model for
vertical plasma stabilization Section 5 discusses the details of our formal proof.
Section 6 discusses related work, and Section 7 closes with a discussion of possible
future work on formal methods for fusion reactors.
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2 Background

This section introduces the vertical stabilization problem for tokamak reactors,
assuming very little background in fusion or plasma control. We then introduce
the logic and tool we use to prove the correctness of vertical stabilization.

2.1 Tokamak Reactors

Plasmas for nuclear fusion are composed of unbound electrons and ions at very
high temperatures, and correspondingly high velocities. In order to achieve net
fusion energy gain, the plasma must be confined and its shape carefully con-
trolled. Magnetic confinement systems take advantage of the Lorentz force,
wherein charged particles will spiral in helical paths around magnetic field lines.
In the magnetic confinement design called a tokamak [32], shown in Figure 1
on page 2, toroidal coils wrap around the smaller circumference of a toroid and
generate a magnetic field oriented along the larger circumference. This causes
the charged particles to gyrate around that field, and induces confinement within
the body of the toroid.

However, the magnetic field ~B from toroidal coils is nonuniform across the
diameter of the coils. Along with the curvature of the toroid, this results in forces
to create a vertical charge separation between electrons and ions. That in turn
induces an electric field ~E in the vertical direction, which causes the plasma to
move towards the outer boundary of the toroid due to ~E × ~B drift. In order
to compensate for this external drift, a magnetic field in the poloidal direction
(around the small circumference of the torus) must be added, to reshape the
circumferential magnetic field lines into helices. The degree of helicity, or the
ratio of the number of toroidal circuits to poloidal circuts, gives the tokamak
safety factor q, a measure of the stability of the tokamak design. In tokamaks
the poloidal magnetic field is generated by a current driven through the plasma
itself.

This basic tokamak design, which generates a plasma with a circular cross-
section, suffices for theoretical confinement of the plasma. However, in order
to improve performance, it is necessary to vertically elongate the plasma cross-
section. There are several reasons for this. A vertically elongated plasma results
in a higher safety factor q, enabling stable operation with a higher plasma cur-
rent for a given tokamak geometry and toroidal magnetic field strength. Addi-
tionally, a vertically elongated plasma allows the placement of a divertor [21],
which increases efficiency by removing impurities and fusion byproducts from
the plasma while the reactor is operating. Moreover, tokamaks with particular
elongated plasma shapes can operate in a high-confinement regime, with confine-
ment times that can be 2 to 3 times longer than the standard low-confinement
regime [22].

Plasma shaping is performed using an additional set of poloidal magnetic
field coils placed outside of the toroidal coils, as shown in Figure 1 on page 2.
If the plasma is vertically centered between the outer poloidal coils, then its
vertical position is at equilibrium when the currents on the upper and lower
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coil are the same. However, if the plasma is displaced vertically, this creates an
instability, and the plasma is rapidly accelerated toward the upper or lower wall
of the chamber. Therefore, an active feedback loop and vertical stabilization is
necessary to maintain confinement and the desired plasma shape [8, 3].

2.2 Vertical Stabilization

The vertical stabilization methodology we consider is that used in the T-15
Tokamak [24]. In this design, a pair of outer poloidal field coils are positioned
between the toroidal coil and the vacuum vessel of the plasma. Operating as part
of a feedback control system, these coils generate a magnetic field distribution
that can compensate for the plasma’s vertical instability and bring the system
back to equilibrium.

We follow the stabilization model of Mitrishkin et al. [28], which utilizes a
multiphase thyristor rectifier, a type of high power switching device, as the ac-
tuator. The controller is based on a linear combination of physically measurable
elements: the plasma vertical displacement, and the current and voltage of the
outer poloidal coils. An unstable linear model is used for the plasma, as the
position displacements are assumed to be small relative to the major or minor
radii of the tokamak, and we use a linear rectifier model as well.

Relatively simple models have been chosen to illustrate the fundamental dy-
namics of the system, as a starting point for future work on more complex
models. In using a linear model for the plasma, we make the assumption that
the displacement of the plasma’s position from equilibrium is relatively small in
comparison to the plasma’s major and minor radii. This model holds in the case
in which the plasma starts near the equilibrium position, as calculated by numer-
ical simulation for example, and that the plasma position remains in closed-loop
control. As stated in Mitrishkin et al. [28], this is a common simplification for
plasma control systems models in order to make the dynamics models tractable.
We justify this assumption by noting that one condition of successful closed-loop
operation is that the plasma must not deviate far enough from equilibrium to
escape the small-signal regime. Such simplified models have been used success-
fully in operational plasma control systems for many years [28]. Mitrishkin et al.
reference such models in use for the tokamaks T-11 and Globus-M, in operation
for more than 10 years [28]. They also reference background work leading to the
selection of the linear first-order rectifier model from a Russian study [5] and
communications with the ASDEX Upgrade tokamak team [9].

The system of three equations used to model the stabilization system in the
T-15 tokamak are: the plasma model,

τplasma
∂Z

∂t
− Zref = KplasmaI,

the model for the outer poloidal field coils,

L
∂I

∂t
+RI = U,
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and the multiphase thyristor rectifier model,

τrectifier
∂U

∂t
+ U = KrectifierV.

Here, τplasma and Kplasma are the time constant and gain of the plasma model,
τrectifier and Krectifier are the time constant and gain of the rectifier model, I
and U are the current and voltage of the outer poloidal field coils, and Z is
the plasma vertical position. R is the resistance of the control coil, and L is its
inductance. The controller output V is specified by the state feedback synthesis
method [44], determined by controller gains K0, K1, K2, and K3. By applying
gains to each of the state variables and the reference plasma vertical position
(Zref), the controller output voltage is determined:

V =̇K0Zref −K1Z−K2I−K3U.

2.3 Differential Dynamic Logic

This paper uses differential dynamic logic (dL) to formally specify and verify
the correctness of a vertical stabilization algorithm. Differential dynamic logic
is a logic for specifying and verifying properties about hybrid time dynamical
systems [35, 33] and has been previously used to verify properties about adaptive
cruise control [27], aircraft collision avoidance [18], and SCUBA dive computers
[4]. The terms of dL are those of real arithmetic:

θ ::= x | r | θ · θ | θ + θ | θ − θ | θ
θ

where x ∈ Vars is a variable, r ∈ R is a real number, and θ
θ defined whenever

the denominator is not equal to zero.
Differential dynamic logic is used to reason about reachability properties of

hybrid programs. Hybrid programs are generated by the grammar following:

α, β ::= x := θ | α;β | α ∪ β | ?ϕ | α∗ | x′ = θ&ϕ

where x is a variable, θ is a term, and ϕ is a formula (the grammar and meaning
of dL formulas is reviewed below). The meaning of hybrid programs is defined
over mappings from variables to real values (these mappings are called states):

– The assignment program x := θ assigns to the variable x the value θ, leaving
all other variables in the state unchanged.

– The nondeterministic choice program α∪β transitions from an initial starting
state s0 to any new state that can be reached by executing either α or β
from s0.

– The sequential composition program α;β first runs the program α and then,
from the resulting states, runs the program β.

– The test/assert program ?ϕ terminates if ϕ is false, or continues executing
without any change to the state if ϕ is true.
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– The loop program α∗ transitions from a state s0 to any state that can be
reached by executing α zero or more times. Looping is equivalent to a non-
deterministic choice over a countable number of options:
α∗ ≡ {NO OP ∪ α ∪ α;α ∪ α;α;α ∪ . . . }

– The continuous evolution program x′ = f&ϕ follows the system of differen-
tial equations x′ = f forward for any amount of time so long as ϕ remains
true throughout.

The formulas of dL form a first order logic for specifying reachability prop-
erties about hybrid programs. The grammar of dL formulas follows:

ϕ,ψ ::= ϕ ∧ ψ | ¬ϕ | ∀x, ϕ | ∃x, ϕ | [α]ϕ

where the meaning of [α]ϕ is that after every execution of α, ϕ is true.
Differential dynamic logic is implemented by the KeYmaera X theorem prover

[13]. This paper uses KeYmaera X and, in particular, implements custom proof
search scripts using the Bellerophon tactical programming language [12].

2.4 Example: Ball Suspended in Cylinder

We now use a highly simplified version of the plasma vertical stabilization prob-
lem to illustrate how dL and hybrid programs are used to specify properties
about dynamical systems. Consider a sphere suspended at the center of a cylin-
der. The cylinder’s height is equal to its diameter, and the sphere’s position
may change. The controller must choose, at each control step, whether the first
derivative of the sphere’s position should increase or decrease. The controller’s
objective is to ensure that the ball does not touch the sides of the cylinder. This
problem is illustrated in the diagram following:

Fig. 2. Ball suspended in cylinder.

Denote by cd the diameter and height of the cylinder, by cr the radius of the
cylinder, by br = bd

2 the radius of the sphere, by bp the offset of the ball’s position
from the midpoint of the cylinder, and by bv the vertical velocity of the sphere.
We will assume the ball is contained within the cylinder, so br is significantly
smaller than cr. The control program must choose, at each control step, a value
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of
∂bp
∂t that prevents the ball from touching the sides of the cylinder. The fact

that that sphere never touches the cylinder’s boundaries is expressible using the
dL formula:

A > 0 ∧B > 0 ∧ T > 0 ∧ bp < cr − br → [model]bp < cr − br

where:

model ≡ {ctrl; t := 0; plant}∗

ctrl ≡ ctrlA ∪ bv := 0 ∪ ctrlB

ctrlA ≡?bp +AT < cr − br; bv := A

ctrlB ≡?bp −BT < cr − br; bv := −B
plant ≡ {b′p = bv, t

′ = 1 ∧ t ≤ T}

This simple example demonstrates how the dynamics of a moving object can
be modeled in dL by referring to its offset from a fixed reference point (in this
case, the center of the cylinder).

3 The T-15 Vertical Stabilization Controller

This section reviews the controller model for vertical stabilization of the T-15
tokamak via a multiphase thyristor rectifier. The model is substantially similar
to the model presented in Mitrishkin et al. [28]. The system consists of four
main components: the controller, the rectifier, the coil system, and the plasma
of the tokamak. Figure 3 on page 8 illustrates the control scheme, wherein each
component is represented as an individual control block.

The Controller block represents a feedback controller with four inputs and one
output. The four inputs consist of the measured voltage output from the rectifier
(U), the current in the outer poloidal field coils (I), the plasma vertical position
(Z), and a vertical reference position Zref. As shown in Figure 3 on page 8, the
controller amplifies the input signal Zref and the feedback signals U , I, and Z
by controller gains K0, . . . ,K3. At the summing junction inside the controller,
the resulting amplified Zref signal is added and the resulting amplified feedback
signals are subtracted to produce the output signal V .

The controller gainsK0, . . . ,K3 are tuned to achieve the desired performance.
This paper considers an analysis that is parametric in one of these gains (K0).
Our analysis applies for an entire range of possible values of K0 instead of, e.g.,
numerically checking each possible value. The goal of this partially parametric
analysis is to lay the groundwork for a fully parametric analysis.

The control signal V is sent to the multiphase thyristor rectifier system of
the tokamak, which is represented by the Rectifier block in Figure 3 on page
8. The multiphase thyristor rectifier system functions as the actuator for the
vertical position control system. By regulating phases of thyristor bridges and
utilizing a pulse-phase control circuit, the multiphase thyristor rectifier system
outputs a regulated voltage (U) to control the tokamak’s outer poloidal field
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Fig. 3. System block diagrams for the vertical stabilization controller. (a) The toka-
mak is represented by a system block diagram. The overall system consists of a feedback
controller, a multiphase thyristor rectifier, a control coil system, and tokamak plasma.
These are represented, respectively, by the Controller, Rectifier, Coil, and Plasma sys-
tem blocks. V is the output from the controller, U is the voltage measures at the output
of the rectifier, I is the current measured from the output control coil system, and Z is
the measure plasma vertical position. (b) The controller stabilizes the vertical plasma
position by amplifying the input signal Zref and the feedback signals U , I, and Z by
their respective gains K0 through K3. The resulting amplified Zref signal is added and
the resulting amplified feedback signals are subtracted to produce the output signal V
at the summing junction.

coil [28]. In our model, we generalized the behavior of the multiphase thyristor
rectifier as a single system, instead of modeling the thyristor bridges separately.
As discussed in Section 2.2, this assumption holds in the case of small deviations
from equilibrium, where the system is assumed to be under closed-loop control.
We use the rectifier time constant, τrectifier and the rectifier gain, Krectifier to
describe the multiphase thyristor rectifier.

The voltage U is the drive signal for the outer poloidal field coil, which
is represented by the Coil system block in the overall system block diagram.
This voltage induces a current in the coils, modulated by its properties and
environment. The output of the Coil system block is a current (I) regulated
between an upper and lower operational limit.



A Formally Verified Plasma Vertical Position Control Algorithm 9

Table 1. Meanings and physical constraints on variables occurring in the plasma ver-
tical stabilization model.

Variable Meaning Constraints

Zref Desired Plasma Position (Externally Specified) 0 < Zmin < Zref < Zmax

V Controller Output
K0 Controller Gain Constant for Desired Plasma Position > 0
K1 Controller Gain Constant for Plasma Position > 0
K2 Controller Gain Constant for Current > 0
K3 Controller Gain Constant for Voltage > 0

Z Plasma Position 0 < Zmin < Z < Zmax

U Rectifier Voltage 0 < Umin < U < Umax

I Coil Current 0 < Imin < I < Imax

τplasma Plasma Time Constant > 0
τrectifier Rectifier Time Constant > 0
Kplasma Plasma Constant > 0
Krectifier Rectifier Constant > 0

R Resistance of Coil Device-specific
L Inductance of Coil Device-specific

Next we model the impact of the Coil system on the plasma itself. In ad-
dition to the outer poloidal field coil, a tokamak contains inner poloidal field
coils, toroidal field coils, a primary transformer, ohmic heating coils, and other
control coils depending on the tokamak design, as shown in Figure 1 on page
2. For the “Plasma” block in our KeYmaera X model, we abstract the response
of the plasma and the feedback of these other control systems into one differ-
ential equation that describes the relationship between the plasma parameters
and the final plasma vertical position, represented by the plasma time constant
τplasma and the plasma gain Kplasma. This abstraction again holds in the stem re-
mains in the small-signal regime near equilibrium and does not experience large
deviations, in which case the complexities of the individual components would
become apparent. For the T-15 tokamak, τplasma and Kplasma were estimated
using a DINA plasma model [28, 23]. The output of the Plasma block arises
from a sensor system that measures the plasma vertical position Z.

Table 1 presents a summary of the model variables, as well as their opera-
tional constraints. In addition to the variables already discussed, there are several
constants that are used in our model. The resistance R and the inductance L of
the outer poloidal control coil vary across different tokamak designs. For the T-15
tokamak that we study in this work, Mitrishkin et al. calculated the resistance
and inductance of T-15 tokamak to be 0.09 Ω and 0.0042 H respectively.

4 The Model

This paper contributes a partially verified controller for T-15 vertical stabiliza-
tion. The primary task is to verify that, for a particular choice of controller
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gains, the plasma’s position will not exceed a maximum threshold. The maxi-
mum thresholds represent the boundaries of model validity (in particular, the
boundaries of model validity will be smaller than the boundaries of the tokamak
chamber, so remaining within these bounds ensures that the plasma remains
within the tokamak’s chamber).

Table 1 reviews the variables used in our model. The goal of the control
algorithm is to drive the plasma’s position Z to the desired set=point Zref. The
safety constraint proven in this paper is that the plasma’s position Z stays below
a maximum safe value Zmax.

1 ∃ K0,K1,K2,K3 .
2 τplasma = .0208 ∧ τrectifier = 0.0033 ∧R = 0.09
3 ∧L = 0.0042 ∧Krectifier = 2000
4 ∧0 = Zmin < z < Zmax < 0 ∧ z = i = u = 0
5 ∧ 0 ≤ Umin < Umax ∧ 0 ≤ Imin < Imax

6 →
7 [
8 Zref := ∗; ?Zmin ≤ Zref ∧ Zref < Zmax;

9 ?Z = Zref → z =
−Kplasma

I ∧ I = U
R ∧U =

Krectifier

(K0Zref−K1Z−K2I−K3U) ;

10 {
11 Z ’ = Z

τplasma
+

KplasmaI
τplasma

,

12 I ’ = U
L −

RI
L ,

13 U ’ = −U
τrectifier

+
Krectifier(K0Zref−K1Z−K2I−K3U)

τrectifier

14 }
15 ] ( zMin<z<zMax)

The model verified in this paper is listed above. The first nine lines state
constraints on the physically realizable values for various parameters.

Line 1 existentially quantifies over the choice of gain K0, . . . ,K3. The con-
straint is eventually provided as input by the user and its correctness is checked
using numerical simulation. The rest of the preconditions for the model, on
Lines 2–4, express straight-forward constraints on the minimum and maximum
value parameters and additionally set the values of constants to values appro-
priate for the T-15 reactor.

Line 8 models the choice of a new reference vertical position for the plasma.
We assume that the reference position is provided as input from an external
control module. In our model, we simply assert that the external module provides
a reference value that is within the safety envelope.

Line 9 specifies the values that Z, I, and U should have when the plasma’s
vertical position is at the reference point. The condition presented is a conjunc-
tion formed by two simplified z and U equations and is derived via Ohm’s Law
letting z = zref and I = U/R. The entire program terminates when the con-
dition in Line 9 is false. This is a condition on the valid choices of K0, . . . ,K3;
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i.e., this line should be understood as constraining the choice of gains for the
controller, not the dynamics of the rest of the system.

Line 11 to Line 13 displays the model equations from Section 2.2 rewritten
with the derivative term on the left hand side. Line 15 models the condition we
want to ensure, which is to maintain z between zMin and ZMax.

5 The Analysis

Our model and corresponding analysis decompose the plasma’s dynamics into
two phases: an initialization phase and a steady-state phase. The graphs on page
12 visualize these two phases for the Z, I, and U variables.

Our proof is formalized in the KeYmaera X theorem prover. This section
provides an intuition for how the geometry of the system relates to our formal
derivations. We also comment on how the geometric intuitions underlying our
informal description of the formal proof are encoded in the proof assistant. Before
discussing our proofs, we recall a few inference rules from the proof calculus of
dL.

5.1 The Proof Calculus of Differential Dynamic Logic

The primary proof techniques used for this construction are differential cuts,
differential induction, and differential weakening. We briefly recall these proof
techniques; our treatment is not exact, but contains enough formality that the
reader will understand our proof. A full development of the proof calculus is
presented in [36].

Differential cuts are similar to cuts in propositional logic [34]. Unlike propo-
sitional logic, dL does not admit cut elimination; i.e., differential cuts strictly
increase the deductive power of the logic. To prove that ϕ is an invariant of an
ODE c restricted to the domain F , it suffices to find some G such that G is an
invariant and, additionally, ϕ in an invariant of c restricted to the domain F ∧G.
As an inference rule,

Γ ` [c&F ]G Γ ` [c&F ∧G]ϕ

Γ ` [c&F ]ϕ
DC

Differential induction proves invariants about differential equations by rea-
soning about the Lie derivatives of formulas. Geometrically, differential induction
proves that a property ϕ is true throughout the flow of an ODE x′ = θ by es-
tablishing that, at every point in the vector field, derivatives point into the set
ϕ. As an inference rule,

Γ, F ` ϕ ` F → [x′ := θ](ϕ′)

Γ ` [x′ = θ&F ]ϕ
DI

Finally, differential weakening simply states that the domain constraint on an
ODE is itself an invariant of the ODE. Stated as an inference rule,
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Fig. 4. Above: the dynamics of Z, I, and U as Z approaches Zref for parameter values
L = 0.0042, R = 0.09, Zref = 0.002, τplasma = 0.0208, τrectifier = 0.0033, Kplasma =
0.0000178, Krectifier = 2000, V = 0.1, and K = [100.0, 243.3287, 0.0032, 0.0013].
These are the parameters that were used in Matriskin et al. [28]. Below: similar
simulation but with Zref < Z. The data for these figures were generated using the
ScyPy scipy.integrate.odeint function [42] and the figures were rendered by
the matplotlib library [20]. Notice that the graph of Z is scaled differently from the
graphs of I and U so that its magnitude is large enough to see.

Γ ` ϕ Γconst ` F → ϕ

Γ ` [x′ = θ&F ]ϕ
DW

where Γconst is the subset of formulas in Γ that do not mention any of the
variables occurring primed in x’ = θ.3

In addition to these inference rules that allow reasoning about reachability
properties about differential equations, we will denote by R the inference rule
which proves ϕ whenever ϕ is in the modality-free fragment of dL. This fragment
of dL is the first-order logic over real-closed fields and it is decidable via quantifier
elimination; the decidability result is due to Tarski [41] and its effective algorithm
to Collins [7].

3 There are also conditions on the occurrences of these variables in ϕ; however, in
our case, those conditions are irrelevant because ϕ is simply a formula of first-order
logic over real arithmetic and there are therefore no conditions. Platzer’s uniform
substitution calculus provides a full discussion of the static semantics of dL [35].
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5.2 Proof Structure

The vertical stabilization process, subject to appropriate control, has two phases:
an initialization phase and a steady state phase. Our formal proof decomposes
into these two phases. During the initialization phase, Z approaches Zref mono-
tonically. Proving safety within this phase requires establishing that the system
operates within a trapping region that confines Z below Zref. Eventually, the sys-
tem reaches a steady state where Z = Zref and where I and U are also invariant.
We begin by describing our proof for the steady state phase.

5.3 Safety in the Steady State

The steady-state phase of the dynamics is the region where Z = Zref. Proving
that the system is safe at the steady state is simple because the position of
the plasma is invariant within this region and the values of the other system
variables are constant. Therefore, the steady-state phase is fully characterized
by the intersection of the z, i, and u nullclines.

The z nullcline where z = Zref gives a constraint that relates the position of
the plasma to the coil current (I):

∂z

∂t
= 0 =

Zref

τplasma
+

KplasmaI

τplasma
(1)

Zref

τplasma
=
−KplasmaI

τplasma
(2)

Zref = −KplasmaI (3)

Similarly, the I nullcline is a constraint that relates the position of the plasma
to the rectifier voltage:

∂I

∂t
= 0 =

U

L
− RI

L
(4)

U

L
=
RI

L
(5)

I =
U

R
(6)

Finally, the U nullcline constrains the choice of controller gains in terms of
the current state of the system:

∂U

∂t
=

−U

τrectifier
+

KrectifierV

τrectifier
(7)

U =
1

1 +K3Krectifier
V (8)

Notice that the control branch corresponding to this steady state asserts that
each of these equations hold; we abbreviate the conjunctions of Equations (3),
(6), and, (8) as SSA:
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SSA ≡U =
1

1 +K3Krectifier
V

∧ I =
U

R
∧ Zref = −KplasmaI

Composing these nullclines gives a fixedpoint where Z = Zref. We introduce
a new soundness-critical proof rule to KeYmaera X which allows us to reason
about this fixed-point:

Γ, y = y0 ` [x′ = f(x) ∧ y = y0]P,∆ Γ ` (x = 0)′

Γ, y = y0 ` [x′ = f(x)]P,∆
DFP

where x and f are vectors. I.e., if y = y0 initially and the derivative of each
primed variable is 0 initially, then y = y0 after any flow. Given this extension,
we can then easily prove that the system is safe whenever it enters the fixed-point
in a safe configuration:

∗
Γconst,Zmin < z0 < Zmax ` x = x0 → Zmin < Z < Zmax

R

Γ,Zmin < z0 < Zmax,SSA ` [plant ∧ x = x0]Zmin < Z < Zmax

DW

Γ,Zmin < z0 < Zmax,SSA ` [plant]Zmin < Z < Zmax

DFP

where Γconst are the formulas in Γ that only mention variables that do not occur
primed in the ODEs plant. In this case, that includes the assumption from our
controller’s assertion that Zref < Zmax. The result of the proof involves proving
∆1, which is Γ,SSA ` [plant]Z < Zref.

5.4 Proving the System Remains Safe while Approaching the
Reference Value

The remainder of the proof involves showing that the controller induces a trap-
ping region that keeps Z above (or below) Zref, and furthermore that this trap-
ping region is sufficient to ensure that Zmin < Z < Zmax.

Instead of establishing this property globally for an infinite set of possible
controller gains, we instead observe that each variable at this point in the proof
will have a specific value chosen by an experiment designer. The existential quan-
tifiers on Line 1 will have already been instantiated with values known to satisfy
Line 9. Therefore, any trusted numerical integrator can be used to simulate the
full system dynamics out to the fixed point, at which point global reachability
is established using the technique described in the previous section.
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6 Related Work in Formal Methods

To the best of the authors’ knowledge, formal methods tools have not been
previously applied to the verification of plasma control algorithms in tokamak
devices. Therefore, our related work discussion focuses on:

1. applications of formal methods in powerplant control systems,
2. other hybrid systems verification tools also capable of proving properties

about control systems for fusion reactors.

6.1 Applications of Formal Methods in Power Plants and Similar
Control Systems

The Cyber-Physical Systems and Formal Methods research communities have
developed many approaches toward verifying industrial control systems. A thor-
ough survey of the past half century of research in this area is hardly possible,
so we focus instead on formal methods for industrial control systems that might
be relevant to future work in formal methods for plasma control systems.

Formal methods have been used extensively for verification and validation
of nuclear fission power plants. Wassyng and Lawford report on a large-scale
verification project at the Darlington nulear power plant [43] and Németh et al.
applied coloured petri nets to the verification of a primary-to-secondary leaking
safety procedure [30]. Lahtinen’s thesis provides a through survey of these and
other formal methods efforts in the nuclear domain [26].

Most of the work on nuclear safety verification focuses on ensuring the safety
of an already mature system. Therefore, much of the effort in these projects goes
into modeling and verifying the dynamics of large-scale control systems such as
programmable logic controllers. This paper focuses on the verification of con-
troller design rather tha the verification of concrete implementations; therefore,
work on verifying programmable logic controllers, such as the toolkits of Garcia
et al. [17] and Pakonen et al. [31], are highly complementary to the work in this
paper.

In addition to the obvious focus on nuclear fusion, another fundamental dif-
ference between our work and prior work on formal verification of control systems
is the intended mode of use. Most applications of formal methods focus on ma-
ture domains where the fundamental design principles are well-understood and
the primary problem is ensuring the correct implementation of a closed-loop
system. Fusion, on the other hand, remains an unsolved problem. Perhaps the
primary contribution of this paper is the simple suggestion that domain-specific
and light-weight formal methods tools could be very useful to fusion researchers.

6.2 Hybrid Systems Case Studies and Tools

Although no other papers consider verification of fusion reactors, the dynamical
system studied in this paper is mathematically similar to systems studied in
other tools.
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Reachability analysis tools for continuous and hybrid systems are capable of
analyzing the linear system studied in this paper. For example, Althoff et al.
introduce an approach toward reachability analysis of linear systems with un-
certain parameters using matrix zonotopes and interval matrices [2]. The Flow*
tool uses Taylor models for reachability analysis of nonlinear systems [6]. The
dReal [16] and dReach [25] tools provide more automated analyses by framing
hybrid systems reachability in terms of δ-decision procedures, and tools such
as PHAver [10] and SpaceEx [11] are also well-suited to verification of hybrid
systems. Automated analysis of both linear and nonlinear systems is also possi-
ble within KeYmaera X. The Pegasus tool introduced a set of nonlinear control
benchmark problems, some of which exhibit dynamics similar to those studied
in this paper [40].

Although our work used the KeYmaera X tool, fusion control systems might
pose interesting verification challenges for other hybrid systems tools. Our use of
KeYmaera X was motivated by two considerations. First, the authors’ familiarity
with this tool’s implementation details enabled us to rapidly make the changes
to the tool required to enable our analysis technique. Second, our plan for fu-
ture work includes modeling more complex aspects of the fusion reactor’s control
systems and synthesizing safety interlocks that enable the use of reinforcement
learning for these systems. KeYmaera X provides a method for composing ver-
ification results [29]. Because data-driven methodologies can play an important
role in plasma design [37, 38], KeYmaera X’s support for incorporating safety
interlocks into learning systems [14] – especially in cases where some aspects of
the control system are not captured by a first-principles model [15] or repre-
sented in explicitly modeled quantities [19] – provides another motivation for its
use as a platform for this work.

7 Conclusion

Net positive fusion energy is an unsolved problem, and control design is a fun-
damental component of any fusion reactor. Experimenting with new controller
designs is risky on large reactors where failures can cause millions of dollars in
damage and even set back progress in the field. Our hope is that the formal meth-
ods community can contribute a set of robust safety interlocks of modern fusion
reactors. This paper makes a first small step toward that vision by demonstrating
that safety properties about vertical stabilization algorithms are possible to state
and analyze using a combination of theorem proving and numerical integration.
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Platzer. KeYmaera X: An axiomatic tactical theorem prover for hybrid
systems. In Amy P. Felty and Aart Middeldorp, editors, CADE, volume
9195 of LNCS, pages 527–538. Springer, 2015.
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[33] André Platzer. Differential dynamic logic for hybrid systems. J. Autom.
Reas., 41(2):143–189, 2008.
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