Reachability Analysis in the KeYmaera X Theorem Prover

SNR 2017 | Uppsala, Sweden | April 22, 2017 Nathan Fulton

Other System Contributors: Stefan Mitsch, André Platzer, Brandon Bohrer, Yong Kiam Tan, Jan-David Quesel, ...

Trustworthy Foundations

Interactive Reachability Analysis

- > Demonstration
- Bellerophon language and library

Automation and Tooling

Conclusions & Resources

Trustworthy Foundations

KeYmaera X enables trustworthy automation for hybrid systems analysis:

- A well defined logical foundations,
- implemented in a **small trustworthy core**
- that ensures correctness of automation and tooling.

If P is true: no change

If P is false: terminate

Trustworthy Foundations Reachability Specifications

[a]P "after every execution of a, P"<a>P "after some execution of a, P"

Trustworthy Foundations Reachability Specifications

(Dive & q>0 & ...) \rightarrow {?Dive U r := r_{p} }; $\{ \mathbf{X'} = \mathbf{V},$ V' = f(v, q, r) $\& 0 \leq x \}$ } *] (x=0→m≤v)

Trustworthy Foundations Reachability Specifications

(Dive & q>0 & ...) \rightarrow {?Dive U r := r_{0} }; $\{ \mathbf{X'} = \mathbf{V},$ V' = f(v, q, r) $\& 0 \leq x \}$ } *] **(x=0⊸m≤v)**

If the parachuter is on the ground, their speed is safe ($m \le v \le 0$)

Introduction to Differential Dynamic Logic **Dynamical Axioms**

 $[x:=t]f(x) \leftrightarrow f(t)$ [a;b]P \leftrightarrow [a] [b] P [aUb]P $\leftrightarrow ([a]P \& [b]P)$ [a*]P $\leftrightarrow (J \rightarrow P \quad \& \quad J \rightarrow [b] J)$ $[x'=f\&H]P \leftrightarrow H \rightarrow P$

• • •

Introduction to Differential Dynamic Logic Trusted Core

Introduction to Differential Dynamic Logic **Trustworthy Implementations**

Introduction to Differential Dynamic Logic **Prover Core Comparison**

ΤοοΙ	Trusted LOC (approx.)
KeYmaera X	1,682 (out of 100,000+)
KeYmaera	65,989
Isabelle/Pure	8,113
Соq	20,000
HSolver	20,000
dReal	50,000
SpaceEx	100,000

Interactive Reachability Analysis in KeYmaera X

KeYmaera X enables interactive verification and tool development:

Interactive Reachability Analysis in KeYmaera X

KeYmaera X enables interactive verification and tool development:

• A standard library of common proof techniques.

Interactive Reachability Analysis in KeYmaera X

KeYmaera X enables interactive verification and tool development:

- A standard library of common proof techniques.
- A combinator language/library for decomposing theorems and composing proof strategies.

Interactive Reachability Analysis in KeYmaera X Bellerophon

Tactic	Meaning
prop	Applies propositional reasoning exhaustively.
unfold	Symbolically executes discrete, loop-free programs.
loop(J, i)	Applies loop invariance axiom to position i.
dI,dG,dC,dW	Reasoning principles for differential equations.

Interactive Reachability Analysis in KeYmaera X Bellerophon

Tactic	Meaning	
prop	Applies propositional reasoning exhaustively.	¥ 100+
unfold	Symbolically executes discrete, loop-free programs.	- MMM
loop(J, 1)	Applies loop invariance axiom to position i.	
dI,dG,dC,dW	Reasoning principles for differential equations.	

Interactive Reachability Analysis in KeYmaera X Bellerophon

Tactic	Meaning	SUN A
prop	Applies propositional reasoning exhaustively.	
unfold	Symbolically executes discrete, loop-free programs.	MMMA.
loop(J, i)	Applies loop invariance axiom to position i.	
dI,dG,dC,dW	Reasoning principles for differential equations.	

Combinator	Meaning
А;В	Execute A on current goal, then execute B on the result.
ΑΙΒ	Try executing A on current goal. If A fails, execute B on current goal.
A*	Run A until it no longer applies.
A<(B ₀ ,B ₁ , ,B _N)	Execute A on current goal to create N subgoals. Run B _i on subgoal i.


```
prop ; loop(J, 1) <(
   QE, /* Real arith. solver */
   QE,
   Unfold <(
        ... /* parachute open case */
        ... /* parachute closed case */
   )</pre>
```

$$J = v > -sqrt(g/pr) > m \& ...$$

Parachute Open Case:

$$v \ge v_0 - gt$$

 $\ge v_0 - gT$
 $> -sqrt(g/pr)$

Inductive invariants

DI Axiom: $[x'=f\&H]P\leftrightarrow(P\&(H\rightarrow[x':=f]P'))$

DI Axiom: $[x'=f\&H]P\leftrightarrow(P\&(H\rightarrow[x':=f]P'))$

Example:

$$[v' = r_p v^2 - g_t t' = 1] v \ge v_0 - gt$$

DI Axiom: $[x'=f\&H]P\leftrightarrow(P\&(H\rightarrow[x':=f]P'))$

Example:

...

r_p≥0

$$[v' = r_p v^2 - g, t' = 1] v \ge v_0 - gt \leftrightarrow$$

 \leftrightarrow

$$[v':=r_{p}v^{2}-g][t':=1]v' \geq -g*t' \leftrightarrow r_{p}v^{2}-g \geq -g \qquad \leftrightarrow$$

dl Tactic:

DI Axiom: $[x'=f\&H]P\leftrightarrow(P\&(H\rightarrow[x':=f]P'))$

Side derivation:

Example:

$$[v'=r_pv^2-g,t'=1]v \ge v_0 - gt \leftrightarrow$$

$$[v':=r_{p}v^{2}-g][t':=1]v' \geq -g*t' \leftrightarrow r v^{2}-g^{2} - g \qquad \leftrightarrow$$

$$r_{p} = -g$$

dl Tactic:

DI Axiom: $[x'=f\&H]P\leftrightarrow(P\&(H\rightarrow[x':=f]P'))$

Side derivation:

 $(v \ge v_0 - gt)' \leftrightarrow$ $(v)' \ge (v_0 - gt)' \leftrightarrow$ $(v)' \ge (v_0 - gt)' \leftrightarrow$ $(v)' \ge (v_0)' - (gt)' \leftrightarrow$ $(v)' \ge (v_0)' - (tg)' + g(t')) \leftrightarrow$ $V' \ge v_0' - (tg' + gt')$

 $H=r_{p}\geq 0 \& r_{a}\geq 0 \& g\geq 0 \& \dots$

Example:

$$[v'=r_pv^2-g,t'=1]v \ge v_0 - gt \leftrightarrow$$

$$[v'_{2}:=r_{p}v^{2}-g][t':=1]v' \geq -g*t' \leftrightarrow$$

 \leftrightarrow

Interactive Reachability Analysis in KeYmaera X Reasoning about Differential Equations

Pedantry is the price of trust.

Interactive Reachability Analysis in KeYmaera X Reasoning about Differential Equations

Pedantry is the price of trust.

Bellerophon automates pedantic deductions.

Automation and Tooling

Hybrid Systems Analyses can be built on top of KeYmaera X.

Examples:

- ODE Solver
- Runtime Monitoring

Toward Automated Deduction Solving Differential Equations

Toward Automated Deduction ModelPlex Tactic

Toward Automated Deduction Learning how to be Safe

- Automated Analysis for nonlinear systems:
 - Pretty decent automation for systems with univariate nonlinearities.
 - Heuristics for multi-variate systems.

- Automated Analysis for nonlinear systems:
 - Pretty decent automation for systems with univariate nonlinearities.
 - Heuristics for multi-variate systems.
- Heuristic loop invariant generation for control loops

- Automated Analysis for nonlinear systems:
 - Pretty decent automation for systems with univariate nonlinearities.
 - Heuristics for multi-variate systems.
- Heuristic loop invariant generation for control loops
- Taylor Approximations

- Automated Analysis for nonlinear systems:
 - Pretty decent automation for systems with univariate nonlinearities.
 - Heuristics for multi-variate systems.
- Heuristic loop invariant generation for control loops
- Taylor Approximations
- Component-based Verification Tooling

Mueller et al., Change and Delay Contracts for Hybrid System Component Verification, FASE'17 -- Thursday 10:30-12:30

Conclusion

KeYmaera X is a hybrid systems theorem prover with:

- A small and trustworthy prover core and
- Excellent infrastructure for interactively verifying complex systems and implementing automated analyses.

Conclusion

KeYmaera X is a hybrid systems theorem prover with:

- A small and trustworthy prover core and
- Excellent infrastructure for **interactively verifying complex** systems and implementing automated analyses.

Project Website (start here) keymaeraX.org

Online Demo

GPL'd Source Code

Course Materials

web.keymaeraX.org

github.com/ls-lab/KeYmaeraX-release

symbolaris.com/course/fcps17.html

Developers:

- Stefan Mitsch
- Nathan Fulton
- Andre Platzer
- Jan-David Quesel
- Brandon Bohrer
- Yong Kiam Tan
- Markus Voelp

Special Thanks:

 15-424 students, Jean-Baptiste Jeanin, Khalil Ghorbal, Daniel Ricketts

Parachute Closed:

J & t=0 & r=r_p →
$$[x'=v,v'=rv^2-g \& 0 \le x \& t \le T]v>-sqrt(g/pr) > m$$

Proof requires a **differential ghost** because the property is **not inductive**.

An example differential ghost.

$$x > 0 \rightarrow [x' = -x] x > 0$$

An example differential ghost.

 $x>0 \rightarrow [x'=-x]x>0$ Ghost: y'=y/2Conserved: $1=xy^2$

