Safe Reinforcement Learning via Formal Methods

Nathan Fulton and André Platzer

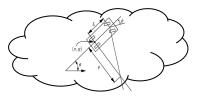
Carnegie Mellon University

Safety-Critical Systems

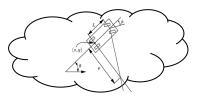
"How can we provide people with cyber-physical systems they can bet their lives on?" - Jeannette Wing

Autonomous Safety-Critical Systems

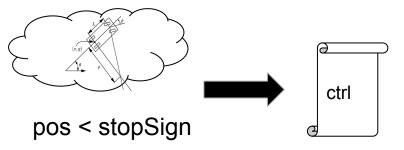
How can we provide people with **autonomous** cyber-physical systems they can bet their lives on?

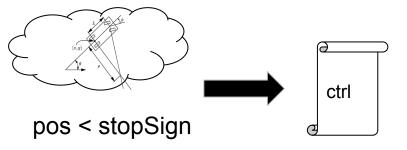


φ



pos < stopSign</pre>





Reinforcement Learning

Approach: prove that control software achieves a specification with respect to a model of the physical system.

Reinforcement Learning

Approach: prove that control software achieves a specification with respect to a model of the physical system.

Benefits:

- Strong safety guarantees
- Automated analysis

Benefits:

- Strong safety guarantees
- Automated analysis

Drawbacks:

• Control policies are typically non-deterministic: answers "what is safe", not "what is useful"

Benefits:

- Strong safety guarantees
- Automated analysis

Drawbacks:

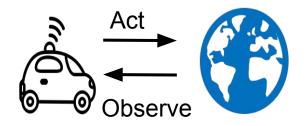
- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model

Benefits:

- Strong safety guarantees
- Automated analysis

Drawbacks:

- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model.



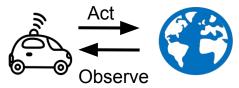
Benefits:

- Strong safety guarantees
- Automated analysis

Drawbacks:

- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model.

Reinforcement Learning



Benefits:

- No need for complete model
- Optimal (effective) policies

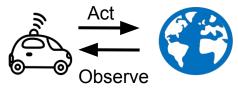
Benefits:

- Strong safety guarantees
- Automated analysis

Drawbacks:

- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model.

Reinforcement Learning

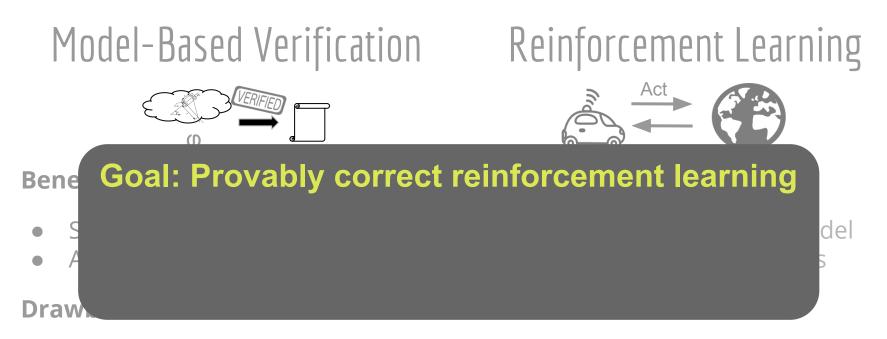


Benefits:

- No need for complete model
- Optimal (effective) policies

Drawbacks:

- No strong safety guarantees
- Proofs are obtained and checked by hand
- Formal proofs = decades-long proof development



- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model

- No strong safety guarantees
- Proofs are obtained and checked by hand
- Formal proofs = decades-long proof development

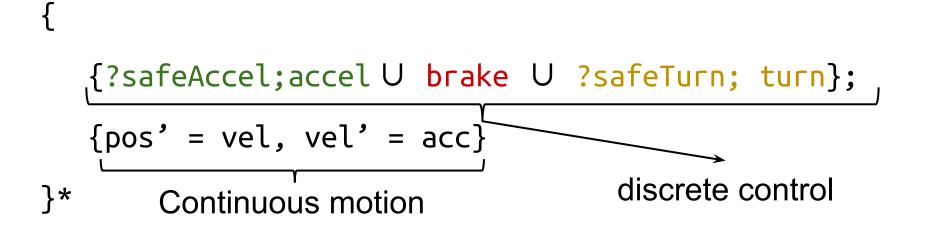
- Control policies are typically non-deterministic: answers "what is safe", not "what is useful"
- Assumes accurate model

- No strong safety guarantees
- Proofs are obtained and checked by hand
- Formal proofs = decades-long proof development

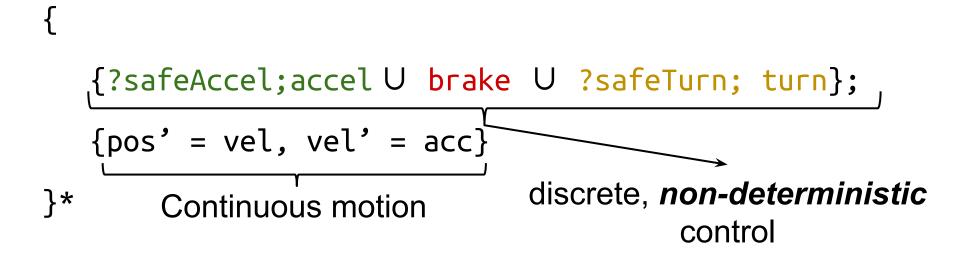
Accurate, analyzable models often exist!

{?safeAccel;accel U brake U ?safeTurn; turn};
{pos' = vel, vel' = acc}

Accurate, analyzable models often exist!



Accurate, analyzable models often exist!



Accurate, analyzable models often exist!

- init \rightarrow [{
 - { ?safeAccel;accel U brake U ?safeTurn; turn};
 - {pos' = vel, vel' = acc}

}*]pos < stopSign</pre>

Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

Accurate, analyzable models often exist!

formal verification gives strong safety guarantees

• Computer-checked proofs of safety specification.

Accurate, analyzable models often exist!

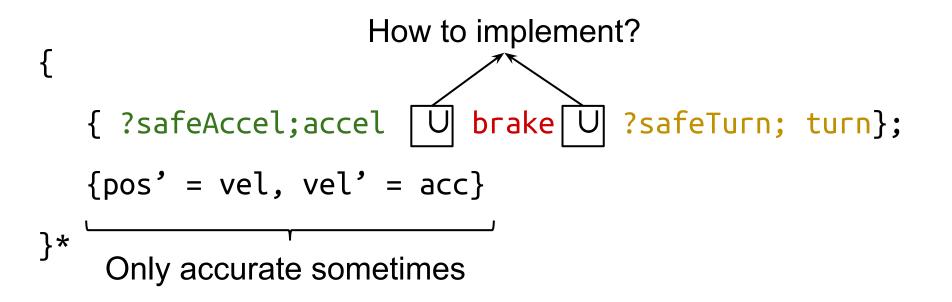
formal verification gives strong safety guarantees

- Computer-checked proofs of safety specification
- Formal proofs mapping model to runtime monitors

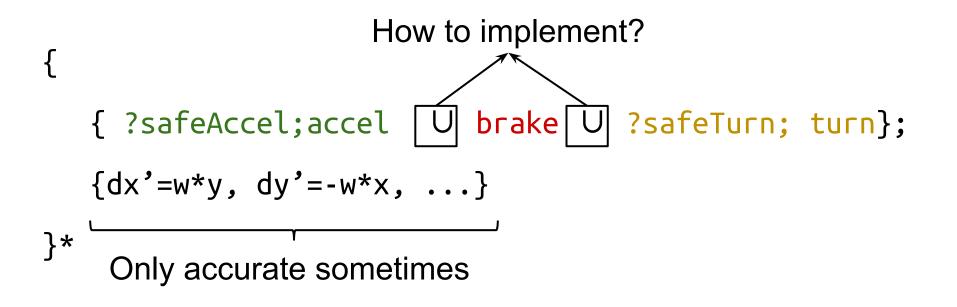
Model-Based Verification Isn't Enough

Perfect, analyzable models don't exist!

Model-Based Verification Isn't Enough **Perfect**, analyzable models don't exist!



Model-Based Verification Isn't Enough **Perfect**, analyzable models don't exist!



Our Contribution

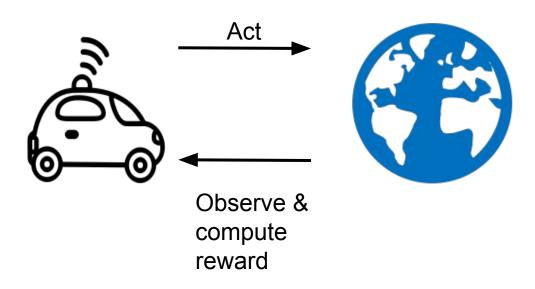
Justified Speculative Control is an approach toward provably safe reinforcement learning that:

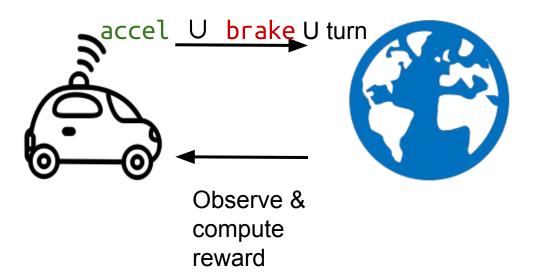
1. learns to resolve non-determinism without sacrificing formal safety results

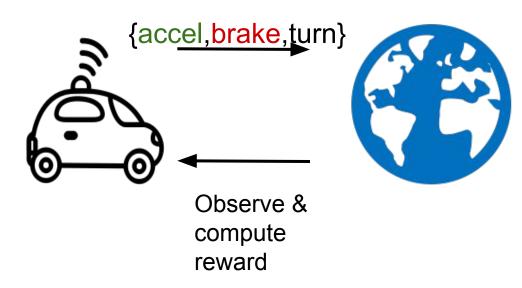
Our Contribution

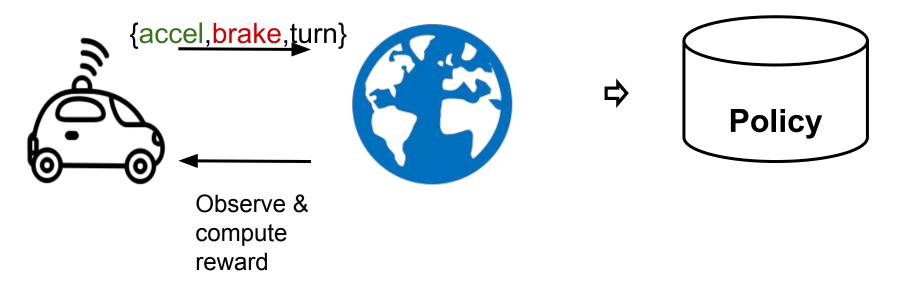
Justified Speculative Control is an approach toward provably safe reinforcement learning that:

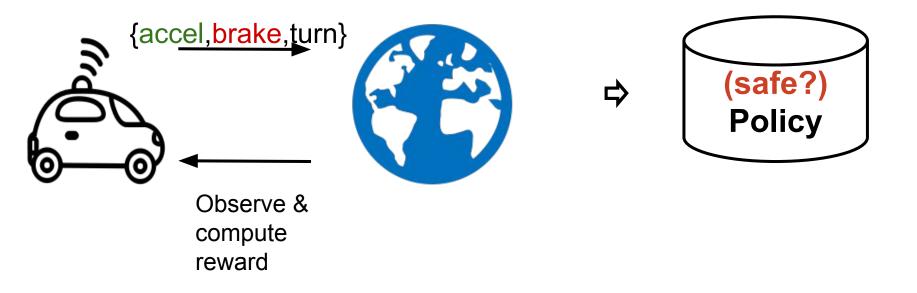
- 1. learns to resolve non-determinism without sacrificing formal safety results
- 2. allows and directs speculation whenever model mismatches occur

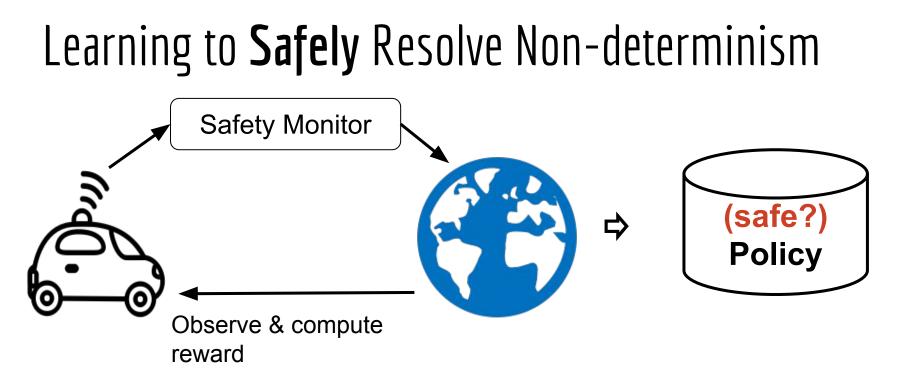


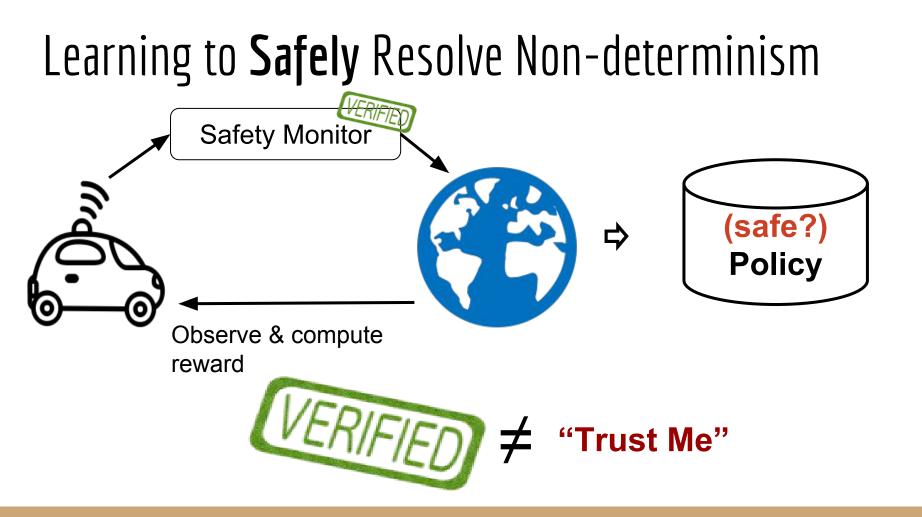


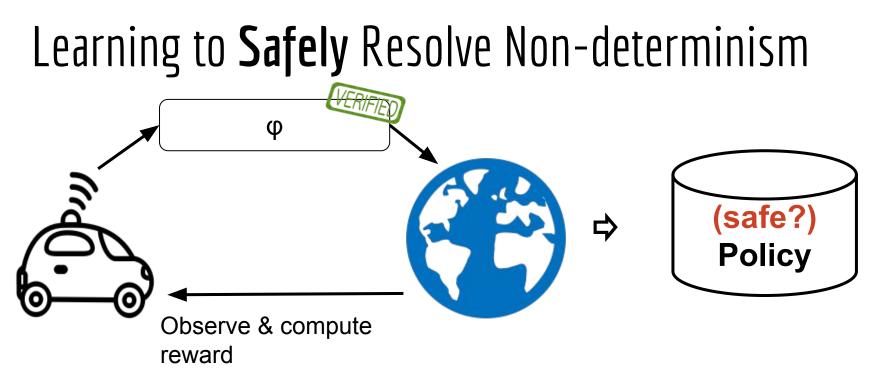






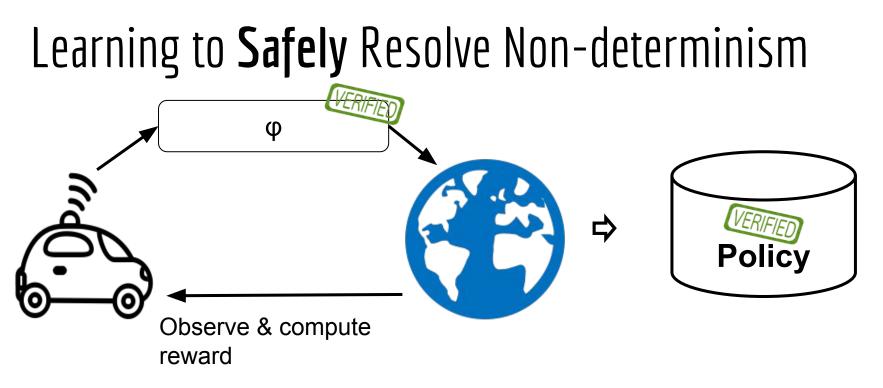






Use a theorem prover to prove:

(init \rightarrow [{{accelUbrake};0DEs}*](safe)) $\leftrightarrow \phi$



Use a theorem prover to prove:

(init \rightarrow [{{accelUbrake};0DEs}*](safe)) $\leftrightarrow \phi$

Learning to **Safely** Resolve Non-determinism

<u>Main Theorem</u>: If the ODEs are accurate, then our formal proofs transfer from the non-deterministic model to the learned (deterministic) policy

Use a theorem prover to prove:

(init \rightarrow [{accelUbrake};ODEs}*](safe)) $\leftrightarrow \phi$

Learning to **Safely** Resolve Non-determinism

<u>Main Theorem</u>: If the ODEs are accurate, then our formal proofs transfer from the non-deterministic model to the learned (deterministic) policy via the model monitor.

Use a theorem prover to prove:

(init \rightarrow [{accelUbrake};ODEs}*](safe)) $\leftrightarrow \phi$

What about the physical model?

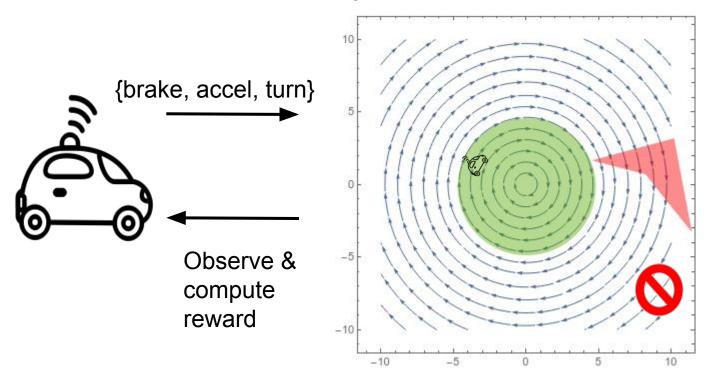
{pos'=vel,vel'=acc}

Observe & compute reward

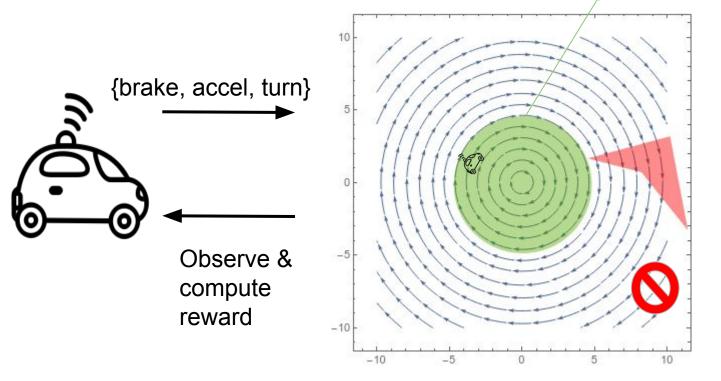
 (\mathbf{D})

Use a theorem prover to prove: (init \rightarrow [{{accelUbrake};0DEs}*](safe)) $\leftrightarrow \phi$

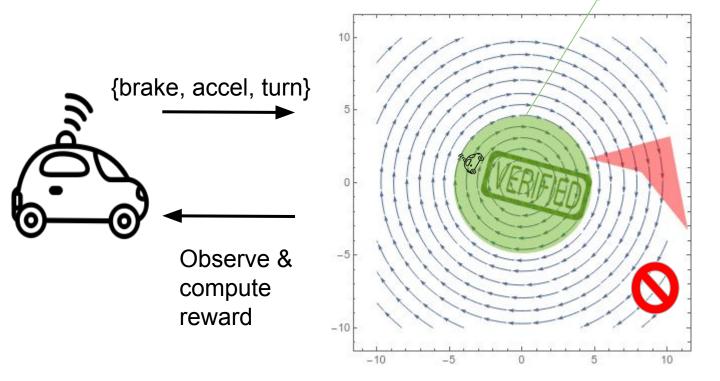
What About the Physical Model?

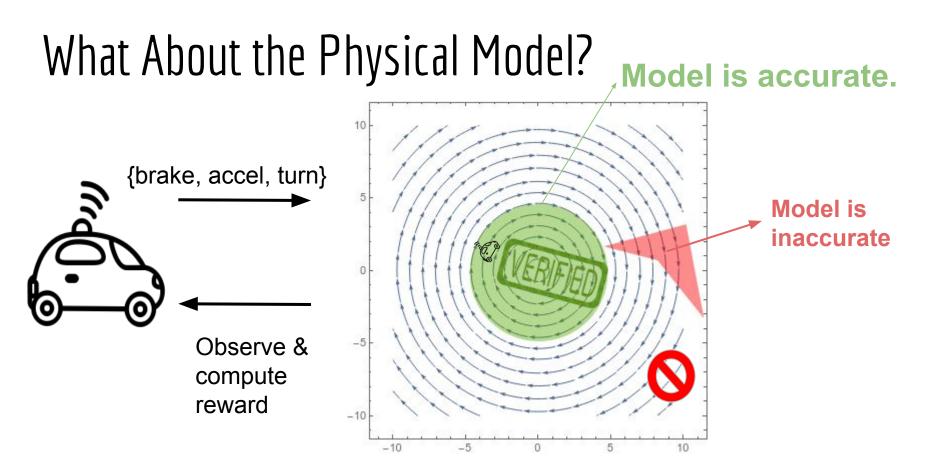


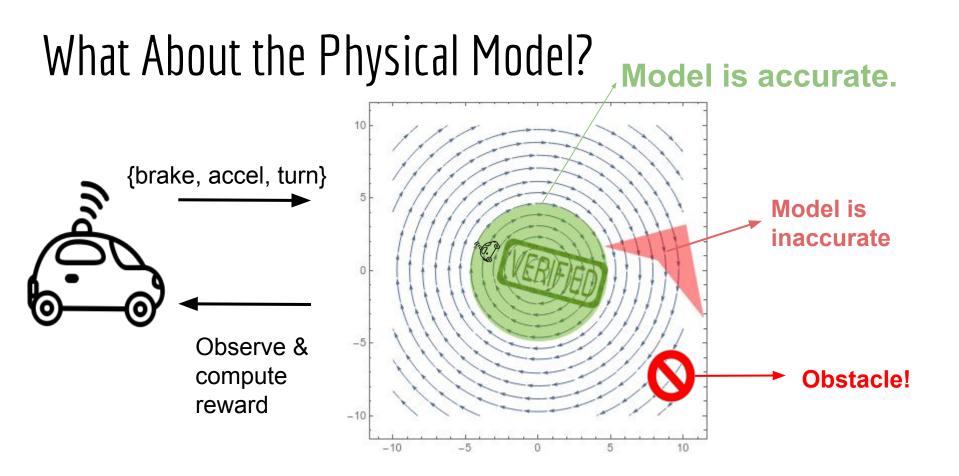
What About the Physical Model? , Model is accurate.



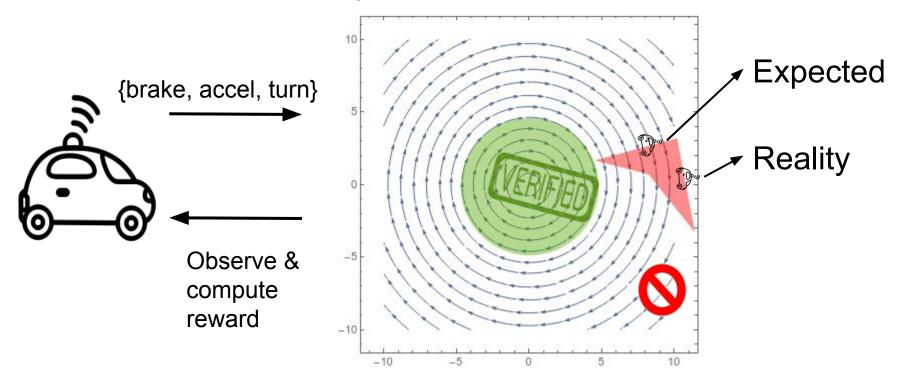
What About the Physical Model? , Model is accurate.



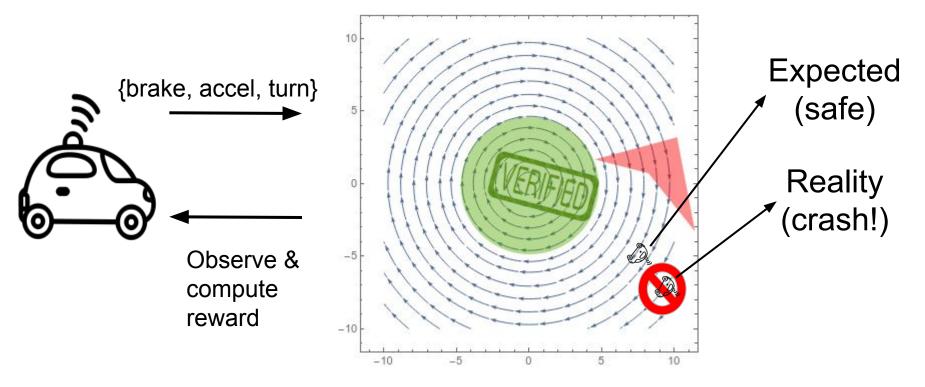




What About the Physical Model?



Speculation is Justified



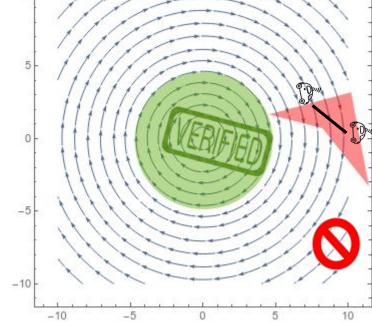
Leveraging Verification Results to Learn Better

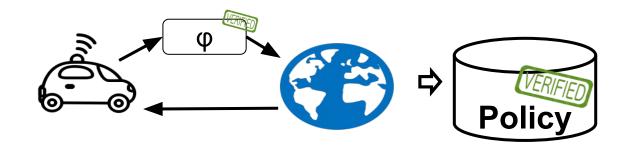
10

Use a real-valued version of the model monitor as a reward signal

Observe & compute reward

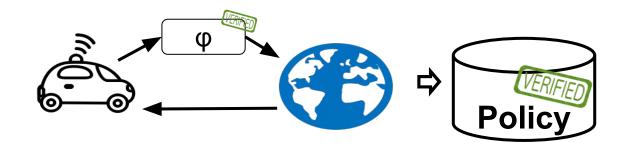
{brake, accel, turn}



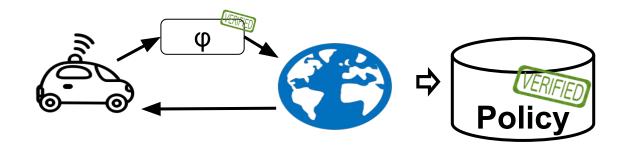


Justified Speculative Control provides the best of logic and learning:

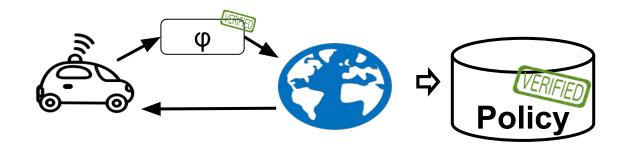
• Formally model the control system (**control + physics**)



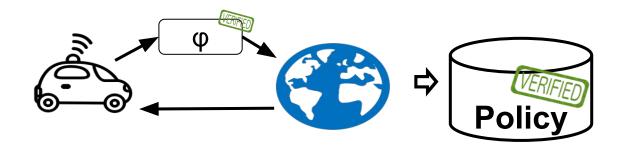
- Formally model the control system (**control + physics**)
- Learn how to resolve non-determinism in models.



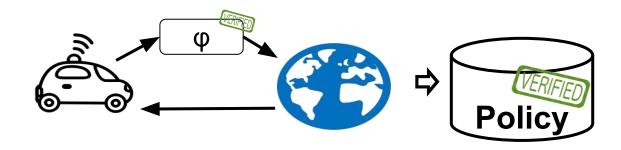
- Formally model the control system (**control + physics**)
- Learn how to resolve non-determinism in models.
- Leverage theorem proving to transfer **proofs** to learned policies.



- Formally model the control system (**control + physics**)
- Learn how to resolve non-determinism in models.
- Leverage theorem proving to transfer **proofs** to learned policies.
- Unsafe **speculation is justified** when model deviates from reality



- Formally model the control system (**control + physics**)
- Learn how to resolve non-determinism in models
- Leverage theorem proving to transfer **proofs** to learned policies
- Unsafe speculation is justified when model deviates from reality, but verification results can still be helpful!



- Formally model the control system (**control + physics**)
- Learn how to resolve non-determinism in models
- Leverage theorem proving to transfer **proofs** to learned policies
- Unsafe speculation is justified when model deviates from reality, but verification results can still be helpful!

